國立成功大學八十三學年度應用数學考試(線性代数試題)第/頁

Linear Algebra

1. Let
$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix}$$
 and $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$

a) Find rank A. (5%)

- (b) Find a basis of $\{x \mid Ax = 0\}$, the null space of A. (6%)
- (c) Find a condition on b such that the linear system Ax = b has solutions. (6%)
- 2. Let V be a vector space, $T:V\to V$ be linear, R(T) be the range of T and N(T) be the null space of T. Prove that

(a) $T^2 = 0$ if and only if $R(T) \subset N(T)$; (7%)

- (b) if $T^2 = T$, then $V = R(T) \oplus N(T)$. (7%)
- 3. Let $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ and $u(t) = \begin{bmatrix} v(t) \\ w(t) \end{bmatrix}$.

 (a) Diagonalize A. (8%)

(b) Solve $\begin{cases} \frac{du}{dt} = Au \\ u(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \end{cases}$ (8%)

4. Suppose A is a complex 10×10 matrix with characteristic polynomial $t(t-1)^9$, and I is the identity matrix.

(a) Find $[A(A-I)]^{10}$. (5%)

- (b) Show that $(A-I)^{101} = -(A-I)^{100}$. (12%)
- 5. Let C[0,1] be the vector space of continuous functions on [0,1], and the inner product on C[0,1] be $< f,g> = \int_0^1 f(t)g(t) dt$. Suppose $S = \{1,t\}$ and W is the subspace spanned by S.
 - (a) Find an orthonormal basis for W by applying the Gram-Schmidt process to S. (8%)
 - (b) Find the orthogonal projection of $h(t) = e^t$ on W. (8%)
- 6. Let A be a real symmetric $n \times n$ matrix, $A = [a_{ij}]$. We call A is positive definite if $x^T A x > 0$ for all nonzero column vector x in \mathbb{R}^n .
 - (a) Show that if A is positive definite, then

$$|a_{ij}| \leq \frac{1}{2}(a_{ii} + a_{jj})$$
 for all $i, j = 1, 2, ..., n$.

(8%)

(b) Prove that A is positive definite if and only if there exists a matrix R, rank R = n, such that $A = R^T R$. (12%)