國立成功大學八十四學年度應数所考試(線性代数試題)第/頁

1. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by

$$T\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 2a_1 - a_2 \\ 3a_1 + 2a_2 \\ a_1 - a_2 \end{pmatrix}.$$

- (a) Let β and γ be the standard ordered basis for \mathbb{R}^2 and \mathbb{R}^3 respectively, find the representation matrix $[T]^{\gamma}_{\beta}$. (3%)
- (b) Let $\beta' = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ and $\gamma' = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$, compute $[T]_{\beta'}^{\gamma'}$. (6%)
- (c) Find a 2×2 matrix P and a 3×3 matrix Q such that $[T]_{\beta}^{\gamma} = Q[T]_{\beta}^{\gamma'} P$. (6%)
- 2. Solve the system of linear equations:

$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 = 1 \\ x_1 - x_2 + 2x_3 = 2 \\ 2x_1 + 3x_3 + x_4 = 3. \end{cases}$$
 (10%)

- 3. Let V and W be finite-dimensional vector spaces and $T: V \to W$ be linear. Suppose V_0 is a subspace of V.
 - (a) Prove that $T(V_0)$ is a subspace of W. (5%)
 - (b) Find the relation of $\dim(V_0)$ and $\dim(T(V_0))$, and prove your conclusion. (12%)
- 4. Suppose A and B are two $n \times n$ matrices and A is similar to B.
 - (a) Show that A and B have the same characteristic polynomial. (7%)
 - (b) Show that trace A = trace B. (7%)
 - (c) Let $(-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$ be the characteristic polynomial of A, show that A is invertible if and only if $a_0 \neq 0$. (6%)
- 5. Let $A = \begin{pmatrix} 1/2 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 3/4 & 1/4 \\ 0 & 1/4 & 3/4 \end{pmatrix}$.
 - (a) Find the Jordan cononical form of A (say J). (6%)
 - (b) Find an invertible matrix S such that

$$S^{-1}AS = J. (8\%)$$

- (c) Evaluate $\lim_{n\to\infty} A^n$. (8%)
- 6. Let $W = \text{span}\{(1,1,1,1),(1,1,-1,0)\}$ and P be the orthogonal projection from \mathbb{R}^4 onto W.
 - (a) Compute $P(x_1, x_2, x_3, x_4)$. (10%)
 - (b) Find the orthogonal projection of u = (1, 2, 3, 4) on W^{\perp} . (6%)