85 學年度國立成功大學正用数學不所线性代数 試題 第一頁

I. Notations and definitions

In the following problem set, the symbols $\mathbb N$ and $\mathbb R$ will be reserved for the set of all positive integers and the set of all real numbers, respectively.

We shall fix a field K and denote by V, W and W' finite dimensional vector spaces over K and we shall use dim V for the dimension of V. For any linear transformation $f:V\to W$, ker f is the kernel of f and $\operatorname{Im} f$ is the image of f.

The letters n and r will denote natural numbers, and $\operatorname{Mat}_n(K)$ ($\operatorname{Mat}_r(K)$) will denote the set of all n by n (r by r, resp.) matrices over K. We call two matrices $A, B \in \operatorname{Mat}_n(K)$ similar if there exists an invertible matrix $P \in \operatorname{Mat}_n(K)$ such that $P^{-1}AP = B$. A matrix $A \in \operatorname{Mat}_n(K)$ is called nilpotent if $A^s = 0$ for some $s \in \mathbb{N}$.

II. Problems

- (1) Let E be a subset of V and $\langle E \rangle = \{ \sum_{\alpha \in K; \nu \in V} \alpha \nu \mid \text{only finitely many } \alpha \text{ are nonzero} \}$. Show that $\langle E \rangle$ is a subspace of V and that $\langle E \rangle = \bigcap \{ W \mid W \text{ is a subspace and } E \subseteq W \}$.
- (2) Let $f: V \to W$ be a linear transformation. Then there exist bases $\{u_1, \ldots, u_m\}$ of V and $\{v_1, \ldots, v_n\}$ of W and a positive integer $r, r \leq m$ and $r \leq n$, such that $f(u_i) = v_i$ for $i = 1, \ldots, r$ and $f(u_i) = 0$ for $i = r + 1, \ldots, m$.
- (3) Let $f: V \to W$ and $g: V \to W'$ be linear transformations such that $\ker g \subseteq \ker f$. Show that there exists a linear function $h: W \to W'$ such that $h \circ g = f$. (Hint. Consider extending a basis of $\ker g$ to a basis of V and remember that $\dim V = \dim(\ker g) + \dim(\operatorname{Im} g)$.)
- (4) (i) Let $\{x_1,\ldots,x_m\}$ be a basis of V. Suppose that $\alpha_1,\ldots,\alpha_m\in K$ are pairwise distinct scalars. 10% If $f:V\to V$ is a linear transformation such that $f(x_i)=\alpha_ix_i$ for $i=1,2,\ldots,m$, and if $g:V\to V$ is a linear transformation with the property that $f\circ g=g\circ f$, then there exist scalars $\beta_1,\ldots,\beta_m\in K$ such that $g(x_i)=\beta_ix_i$ for $i=1,2,\ldots,m$.
 - (ii) Show that if $A \in \operatorname{Mat}_m(K)$ and AB = BA for all $B \in \operatorname{Mat}_m(K)$, then A is a scalar diagonal 10% matrix.
 - (iii) Show that if $A, B, C \in Mat_2(K)$, then $(AB BA)^2$ commutes with C.
- (5) If $A, B \in \operatorname{Mat}_n(K)$ with A invertible, then the matrix A + rB is invertible for all but finite number 15% of $r \in K$.
- (6) Let $A \in \operatorname{Mat}_n(K)$ be nilpotent. Then A is similar to a matrix of the form $\begin{pmatrix} W & 0 \end{pmatrix}$

where $W \in \operatorname{Mat}_r(K)$, $1 \le r \le n$, is of the form

$$W = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

(7) For each of the following matrices A and B, determine whether or not it is diagonalizable over \mathbb{R} . 10% If it is diagonalizable, then find the change-of-coordinate matrix which make it a diagonal matrix, otherwise, explain why it cannot be diagonalized.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$