图 学年度 國立成功大學 应用数学品所线性代数 战超第 / 页

- 1. Let $V = \{(x, y, z) | x 2y + 3z = 0\}$
 - (a) Show that V is a subspace of \mathbb{R}^3 . (5%)
 - (b) Find an orthonormal basis for V. (5%)
 - (c) Find the orthogonal projection of the vector v = (1, 2, 3) on V. (5%)
 - (d) Let P be the orthogonal projection from \mathbb{R}^2 onto V. Find P(x,y,z). (5%)
- 2. Let $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix}$, find A^{20} . (15%)
- 3. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and N(T) the null space of T.
 - (a) Show that $N(T) \subseteq N(T^2)$. (5%)
 - (b) Give an example of T so that $N(T) \neq N(T^2)$. (5%)
 - (c) Prove that if $N(T) = \{0\}$, then $N(T^2) = \{0\}$. (8%)
 - (d) Prove that there exists an integer k such that $N(T^k) = N(T^{k+1}), \tag{7\%}$
- 4. Let $A = \begin{bmatrix} 0 & a \\ b & c \end{bmatrix}$, $abc \neq 0$. Find elementary matrices E_1, E_2, E_3 and E_4 such that $A = E_4 E_3 E_2 E_1$. (10%)
- 5. Suppose A is a 3×3 matrix with trace(A) = $\det A = 0$. Show that $A^3 = \phi A$ for some constant ϕ . (10%)
- 6. Let $V = P_2(\mathbb{R})$ with the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$. If T(f) = 2f' + f for $f \in P_2(\mathbb{R})$. Find $T^*(f_0)$ where $f_0(x) = 5 - 2x + 4x^2$ and T^* is the dual operator of T. (10%)
- Suppose that A and B are diagonalizable matrices.
 Prove or disprove that A is similar to B if and only if A and B are unitarily equivalent. (10%)