Notations and Definitions:

IRⁿ: set of n-dimensional real vectors.

 $\mathbb{R}^{n\times n}$: set of $n\times n$ real matrices.

 $\wp_n(\mathbb{R})$: set of real polynomials of degree $\leq n$.

 A^T : the transpose of the matrix A.

 $A \in \mathbb{R}^{n \times n}$ is positive definite if $x^T A x > 0$ for any nonzero $x \in \mathbb{R}^n$.

Problems:

- 1. Let \mathcal{V} be an m ($m \leq n$) dimensional subspace of \mathbb{R}^n , $P \in \mathbb{R}^{n \times n}$ be a projection on \mathcal{V} , that is, $Px \in \mathcal{V}$ for any $x \in \mathbb{R}^n$ and Pv = v for any $v \in \mathcal{V}$.
 - (i) Show that $\det P = 0$. 5%
 - (ii) Let $V_m = \{v_1, \ldots, v_m\}$ form an orthonormal basis of \mathcal{V} . Find a project P on \mathcal{V} and represent P in a matrix form.
- 2. Let $x_0 < x_1 < \cdots < x_n$ be n+1 distinct real numbers and $y_k \in \mathbb{R}$, $k = 0, 1, \ldots, n$. Show that there is a unique polynomial $p(x) \in \wp_n(\mathbb{R})$ such that $p(x_k) = y_k, k = 0, 1, \ldots, n$. 10%
- 3. Let $A = A^T$, B, $D = D^T \in \mathbb{R}^{n \times n}$ and $I \in \mathbb{R}^{n \times n}$ be the identity matrix.
 - (i) Assume that A is positive definite. Show that if $D B^T A^{-1}B$ is positive definite, then $M = \begin{bmatrix} A & B \\ B^T & D \end{bmatrix}$ is also positive definite. 10%
 - (ii) Verify that if $\gamma > \|B\|_2^2$, then $M = \begin{bmatrix} I & B \\ B^T & \gamma I \end{bmatrix}$ is also positive definite. Here $\|B\|_2^2 = \sup_{\substack{x \in \mathbb{R}^n \\ x^T x = 1}} (x^T B^T B x)$. 10%
- 4. Assume that $A \in \mathbb{R}^{n \times n}$ is fixed. Let T be a linear operator on $\mathbb{R}^{n \times n}$ defined by T(B) = AB. Show that the minimal polynomial for T is the minimal polynomial for A. 10%
- 5. Let \mathcal{U} be an inner product space consisting of continuous complex-valued functions on the interval $0 \le x \le 1$ with the inner product

$$(f|g) = \int_0^1 f(x)\overline{g(x)}dx$$
 for any $f,g \in \mathcal{U}$.

- (i) Show that $h_k(x) = e^{2\pi i k x}$, $k = \pm 1, \pm 2, ...$ are mutually orthogonal. Here $i = \sqrt{-1}$. 5%
- (i) Verify the Bessel's inequality

$$\sum_{k=-n}^{n}\left|\int_{0}^{1}f(t)e^{2\pi ikt}dt\right|^{2}\leq\int_{0}^{1}\left|f(t)\right|^{2}dt \ \text{ for } \ f\in\mathcal{U}.$$

10%

88 學年度國立成功大學原用教學 新 線性代表文 試題 其 2頁

6. Let

$$\mathcal{W} = \left\{ f: [0,1] \to \mathbb{R} \mid f \in C^2([0,1]) \text{ and } f(0) = 0 = f(1) \right\}$$

be an inner product space with the inner product

$$(f|g) = \int_0^1 f(x)g(x)dx$$
 for any $f,g \in \mathcal{W}$.

Here $f \in C^2([0,1])$ means that f is defined on [0,1] and its second derivative is also defined and continuous on [0,1]. Let D^2 be an operator on W defined by

$$D^2(f) = \frac{d^2f}{dx^2}$$
 for $f \in \mathcal{W}$.

- (i) Show that D^2 is self-adjoint. 10% (Hint: Use integration by parts!)
- (ii) Show that D^2 is positive definite, i.e., $(D^2f|f)>0$ for any nonzero function $f\in\mathcal{W}$. 10%
- 7. Let $T: \wp_2(\mathbb{R}) \longrightarrow \wp_2(\mathbb{R})$ be define by $T(f) = f(0) + f(1)(x + x^2)$. Show that T is diagonalizable. 10%