90 學年度國立成功大學正用教学所 為泉 姓代 敖 試題 頁 頁

Work out all problems with details to get full credits.

(1) (a) Let V be \mathbb{R}^2 , with the standard inner product. If U is an unitary operator on V, show (10%)that the matrix of U in the standard ordered basis $\{e_1=(1,0),e_2=(0,1)\}$ is either

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$$

for some real θ , $0 < \theta < 2\pi$.

- (b) Let ϕ be a fixed real number, and let $B=\{\alpha_1,\alpha_2\}$ be the orthonormal basis obtained (10%)by rotating $\{e_1,e_2\}$ through the angle ϕ . Let θ be another real number. Find the matrix $\begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ in the ordered basis B.
- (2) (a) Let A be a square matrix satisfying $A^2 = A$. Find the distinct eigenvalues of A. (10%)
 - (b) Let A be a square matrix of rank k. Show that the number of distinct nonzero eigenvalues (10%)of A is less than or equal to k.
 - (c) Consider the $n \times n$ matrix (10%)

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}.$$

Find the eigenvalues of A. (Hint. Try some eigenvectors of A. What is the rank of A?)

- (3) Let T be the linear operator on \mathbb{R}^2 , the matrix of which in the standard ordered basis is $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. Let W_1 be the subspace of \mathbb{R}^2 spanned by the vector $e_1 = (1,0)$.
 - (a) Show that W_1 is invariant under T. (5%)
 - (b) Prove that there is no subspace W_2 which is invariant under T and which is complemen-(5%)tary to W_1 (i.e., no subspace W_2 satisfying $\mathbb{R}^2 = W_1 \oplus W_2$.)

Let $P_2(\mathbb{R})$ be the vector space of all polynomial functions p from \mathbb{R} to \mathbb{R} which has degree 2 or less (so $p(x) = c_0 + c_1 x + c_2 x^2$ for some $c_i \in \mathbb{R}$). Also, denote by $M_n(\mathbb{R})$ the set of all $n \times n$ matrices over \mathbb{R} .

(4) Define three linear functionals on $P_2(\mathbb{R})$ by (10%)

$$f_1(p) = \int_0^1 p(x) dx$$
, $f_2(x) = \int_0^2 p(x) dx$, $f_3(x) = \int_0^{-1} p(x) dx$.

Show that $\{f_1, f_2, f_3\}$ is a basis of the dual space $P_2(\mathbb{R})^*$. (Hint. Find the dual basis of it in $P_2(\mathbb{R})$.)

(5) Compute the minimal polynomial for each of the following linear operators.

(a)
$$T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$$
, where $T(p) = p' + 2p$;

(b) $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$, where $T(A) = A^t$, the transpose of A.

- (5%)
- (6) Let V be a finite dimensional vector space over \mathbb{C} , and A and B two commuting linear (10%)transformations of V. Show that there is at least one common eigenvector for A and B.

(背面仍有題目,請繼續作答)

(7) Let V be the linear subspace spanned by (1,0,2,3), (2,3,0,1), $(3,1,2,0) \in \mathbb{R}^4$. Find an orthonormal basis of V.