图》學年度國立成功大學。包目数學系線性代數試題共一頁

- 1. Let A, B and C be $n \times n$ matrices. Prove or disprove the following statements:
 - (a) $\det(AB) = \det(BA);$ (5%)
 - (b) trace (AB) = trace (BA); (5%)
 - (c) $\operatorname{rank}(AB) = \operatorname{rank}(BA);$ (5%)
 - (d) If Ax = 0 has nonzero sulction, then there exists b such that Ax = b

has no solution; (8%)

- (e) A, A^2, \dots, A^n and A^{n+1} are linearly independent; (8%)
- (f) If A is invertible, then A^{-1} can be represented by a polynomial of A; (8%)
- (g) If $\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$ is invertible, then A and C are both invertible. (8%)
- 2. Let V be a finite-dimensional vector space.
 - (a) Suppose W_1 and W_2 are subspaces of V such that $W_1 + W_2 = V$. Prove that dim $(V) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$. (8%)
 - (b) Show that if $T: V \to V$ is a linear transformation such that $\operatorname{rank}(T) = \operatorname{rank}(T^2)$, then $V = \ker(T) \oplus \operatorname{Im}(T)$. (8%)
- 3. Let $A = \begin{bmatrix} \frac{5}{2} & -2 & 1 \\ -2 & \frac{5}{2} & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 - (a) Find the characteristic polynomial and the minimal polynomial of T. (6%)
 - (b) Determine the eigenvalues and eigenspaces of T. (6%)
 - (c) Find an orthogonal matrix Q such that $Q^t A Q$ is diagonal. (6%)
- 4. Let V be a complex inner product space and T a linear operator on V. Prove that

(a) if
$$\langle Tx, y \rangle = 0$$
 for all $x, y \in V$, then $T = 0$; (4%)

(b) if
$$\langle Tx, x \rangle = 0$$
 for all $x \in V$, the $T = 0$; (5%)

(c) if
$$|Tx| = |T^*x|$$
 for all $x \in V$, then T is normal; (5%)

(d) if
$$|Tx| = |x|$$
 for all $x \in V$, then $\langle Tx, Ty \rangle = \langle x, y \rangle$ for all $x, y \in V$. (5%)