1. Let T be a linear transformation form the vector space V into the vector space Wand v_1, v_2, \ldots, v_n be a basis for V. Prove that

92學年度國立成功大學數學系應用數學

- (6%)
- (i) T is onto if and only if $T(v_1), T(v_2), \ldots, T(v_n)$ span W. (ii) T is one-to-one if and only if $T(v_1), T(v_2), \ldots, T(v_n)$ is linearly independent.
- (8%)

- 2. Let $A, B \in M_{n \times n}(\mathbb{R})$, show that
 - (i) if A and B are upper triangular, than AB is also upper triangular;
- (5%)(5%)

(ii) rank AB = rank BA is not always true;

- (iii) rank $A \leq 1$ if and only if there exist $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ such that $A = x^t y$.

- (10%)
- 3. Suppose $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R}), T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a+d & a+b+c+d \\ 0 & -a-d \end{bmatrix}$.

(i) Find ker (T), Im (T), nullity (T) and rank (T

(8%)

(iii) Is T diagonalizable? Why?

(10%)(4%)

4. Let $A = \begin{bmatrix} 6 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & 5 & 1 \\ \sqrt{2} & 1 & 5 \end{bmatrix}$.

(i) Find an orthogonal matrix Q such that $Q^{-1}AQ$ is diagonal. (ii) Find a positive-definite matrix B such that $B^2 = A$.

(iii) Evaluate $\lim_{n\to\infty} (\frac{1}{8}A)^n$.

(10%)(5%)

(5%)

- 5. Let V be a fine-dimensional inner product space and $T: V \to V$ be linear.

- Prove the following statements:

 - (i) If the minimal polynomial of T is m(t) = p(t)q(t) where p(t) and q(t)are relative prime polynomials, then $V = \ker (p(T)) \oplus \ker (q(T))$.

(ii) Find the characteristic polynomial and the minimal polynomial of T.

- (ii) If T is idempotent (i.e. $T^2 = T$), then $V = \ker(T) \oplus \operatorname{Im}(T)$.
- (iii) If T is idempotent, then T is self-adjoint if and only if ker $(T) \perp \text{Im } (T)$.
- (10%)(4%)

(10%)