編號: E 47 系所: 數學系應用數學

科目:線性代數

1. Let $M_2(\mathbb{R})$ be the set of all 2×2 real matrices and $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Define a linear map $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ by

$$T(B) = AB - BA$$
 for any $B \in M_2(\mathbb{R})$.

- (a) (5%) Find ker T.
- (b) (5%) Find Im T.
- 2. Let X = C([a, b]) be the set of all continuous real valued functions defined on the interval [a, b]. Let $\varphi : X \to X$ be defined by

$$(\varphi(f))(t) = \int_a^t f(x)dx.$$

- (a) (5%) Show that φ is a linear transformation.
- (b) (5%) Find ker φ .
- 3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map defined by

$$T(x,y,z)=(x+y,x-y,x+y+z)$$
 for any $x,y,z\in\mathbb{R}$.

- (a) (5%) Show that $B = \{(1,0,0), (1,1,0), (1,1,1)\}$ is a basis of \mathbb{R}^3 .
- (b) (5%) What is the matrix of T with respect to the basis B?

4. Let
$$A = \begin{pmatrix} 0 & 3 & 3 \\ -1 & 8 & 6 \\ 2 & -14 & -10 \end{pmatrix}$$
.

- (a) (5%) Find the characteristic polynomial of A.
- (b) (5%) Find the eigenvalue(s) of A.
- (c) (5%) Determine the eigenspace(s) for A.
- (d) (5%) Find the Jordan normal form of A.

(背面仍有題目,請繼續作答)

國立成功大學九十四學年度碩士班招生考試試題

編號: ビ 47 系所:數學系應用數學 科目:線性代數

- 5. Let X_1 and X_2 be subspaces of a finite dimensional vector space V. Show that
 - (a) (5 %) $X_1 \cap X_2$ is also a subspace of V
 - (b) $(5\%) \dim(X_1 + X_2) = \dim X_1 + \dim X_2 \dim(X_1 \cap X_2).$
- 6. A linear transformation T of a real inner product space V is said to be skew self-adjoint if $\langle Tx, y \rangle = -\langle x, Ty \rangle$ for any $x, y \in V$.

Prove that

- (a) (10%) T is skew self-adjoint if and only if the matrix A of T with respect to an orthonormal basis is antisymmetric, i.e., $A^t = -A$, where A^t is the transpose of A.
- (b) (10%) Suppose that T is skew self-adjoint and $T(W) \subset W$. Show that $T(W^{\perp}) \subset W^{\perp}$, where $W^{\perp} = \{v \in V | \langle v, w \rangle = 0 \text{ for all } w \in W\}$ is the orthogonal complement of W in V.
- 7. Let V be a complex finite dimensional vector space and ϕ and ψ two diagonalizable endomorphisms such that $\phi \circ \psi = \psi \circ \phi$. Note that an endomorphism T of V is called diagonalizable if there exists a basis B of V such that the matrix of T with respect to B is a diagonal matrix.
- (a) (10%) Let λ be an eigenvalue of ϕ and let $E_{\lambda} = \{v \in V | \phi v = \lambda v\}$ be the eigenspace of ϕ of eigenvalue λ . Show that $\psi(E_{\lambda}) \subset E_{\lambda}$.
- (b) (10%) Show that there is a basis B of V such that the matrices of ϕ and ψ with respect to B are both diagonal.

The End