系所組別 · 數學系應用數學

者試科日: 線性代數

D 98 : 0306 : 85 ft :

※ 考生請注意:本試題 □可 □不可 使用計算機

Show all works

1. [15%] State the definition of vector space. Show that the set $\{a+b\sqrt{2} \quad a, b \text{ are rational numbers}\}$ together with the operations of addition and multiplication is a vector space. What is its dimension? How about $\{a+b\sqrt{2} \quad a, b \text{ are real numbers}\}$? What is its dimension? How about $\{a+b\sqrt{2} \quad a, b \text{ are integers}\}$? What is its dimension? State your reason.

2. [10%] State the definition of unitary matrix. Let A and B be real matrices. If A+iB is a unitary matrix, show that $\begin{bmatrix} A & -B \\ B & A \end{bmatrix}$ is an orthogonal matrix.

3. [10%] State the definition of Hermitian matrix. Let A and B be real matrices. If A + iB is

a Hermitian matrix, show that $\begin{bmatrix} A & -B \\ B & A \end{bmatrix}$ is a symmetric matrix.

4. [15%] Let A be a 2 \times 2 matrix with entries of real numbers. Assume that A has complex eigenvalues $\lambda \pm i\mu$, where λ and μ are real. Find the matrix B such that $A = B^{-1} \begin{pmatrix} \lambda & \mu \\ -\mu & \lambda \end{pmatrix} B$. Under what conditions it is similar to a diagonal matrix? State your reason.

5. [20%] Let
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

- (a) Find the characteristic polynomial of A
- (b) Find the minimal polynomial of A.
- (c) Let $f(x) = x^4 + 9x^3 + 9x^2 7x + 8$. Find f(A).
- (d) Find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

6. [10%] Find the Jordan form of
$$A = \begin{bmatrix} 2 & -1 & 0 & 1 \\ 0 & 3 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 3 \end{bmatrix}$$
 and the decomposition $A = MJM^{-1}$

7. [10%] Let $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$ with three eigenvalues λ_1, λ_2 , and λ_3 . Show that the matrix label that the condition $\lambda_1, \lambda_2, \lambda_3$ is the trace $\lambda_1 + \lambda_2 + \lambda_3$.

8. [10%] Show that in \mathbb{R}^3 the rotation around the unit vector $\mathbf{v} = (a, b, c)$ by angle ϕ is

$$Q = \cos\phi I + (1-\cos\phi) \left[\begin{array}{ccc} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{array} \right] - \sin\phi \left[\begin{array}{ccc} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{array} \right]$$