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1. (12%) Which of the following statement(s) 1s(are) true:

(a) Let P, be the set of all polynomials of the form
p(x) = a,x” + a;x + ag,

where ag, a; and a; are real number. P; 1s a vector

Space.

(b) Let W = {(x1,x2): x;=0 and x, =0}, with the standard addition and scalar multiplication

operations. W is a subspace of R®.
(c) The set S = {(1,2,3), (0,1,2), (-1,0,1)} spans R°.
1 0 -2 1 0
0 -1 -3 1 3

(d) Let the matrnix A = . The row space and column space of A have

-2 -1 1 -1 3
0 3 9 0 -12

the same dimension.

(e) Let the coordinate matrix of x In R? relative to the ordered basis B = {(1,0), (1,2)} be

[x]a =
[x]B‘ =

(f) The set {1, cos x, sin x} is linearly dependent.

2. (8 %) Sketch the image of the triangle with vertices

transformation deﬁned by the matrix product

description.

3.(20 %) Let U = Spanq|—1|,{ 1 |} and W = Span/

1 0] [1 of1 o
6 2| {0 23 1

-1 -2}

. The coordinate matrix of x relative to the standard basis B’ = {(1,0), (0,1)} 1s

(0, 0), (1, 0), and (0, 1) under the linear

= and give a geometric

0 |+, two subspaces of R°.

(2) (6 %) Find the orthogonal projection of b =| 0 | onto the subspace U.

(b) (8 %) Find a matrix P € R3*3 cuch that Pu=u for all ue€lU and Pw=10 for all

w € W ( 0 denotes the zero vector 1n RB).

(c) (6 %) Following (b), find the eigenvalues and elgenvectors of P.
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4. (20 %) A system of linear equations has uncertain coefficients which are modeled by a random

variable 4 . The system is as follows:

1 4 0 _Tx, 1 [o
10 1-4*> 1 || x
0 0 1+A2_|_x3_| O_J

{
O

e

The probability mass function of A4 1s

0.2, ifa=l,
' p,(a)=403, 1ifa=0,
0.5, ifa=-1.

(a) (10%) Please calculate the probability that the system has nontrivial solutions.

(b) (10%) Please solve the system when nontrivial solutions exist.

| 5. (10%) Switches «,,a,, -, in the diagram open and close randomly and independently. The

probability that switch ¢, is closed at any time equals p,. Calculate the probability that at

any time there is at least one closed path from point 1 to point 2.
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6. (10%) The probability that a certain diode will fail before 1500 hours’ service equals 0.4. If
10,000 such diodes are tested, use the central limit theorem to estimate the probability that I

between 3950 and 4180 will have failed before 1500 hours.
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7. (20%) A transmitter is sending a signal repeatedly to a receiver until the signal is received.
Suppose that the signal is sent N times, where N is a geometric random variable with probability

mass function (PMF) p,(n)=(- )" p and p=0.8. Let the intensity of the received signal be

X, where X is a normal random variable whose probability density function (PDF) conditioning

: -

. 1 X—3

on N is fxw(xln):\/zﬂnexw ( 2;) J‘f
L

(2) (10%) Find the unconditional mean and variance of X.

(b) (10%) Let p,,(n|x) be the conditional PMF of N given X. Find the ratio

pww(” =4|x=2)
PN]X(” =2ix=72)




