國立清華大學100學年度碩士班入學考試試題

系所班組別:數學系碩士班應用數學組考試科目(代碼):線性代數(0202)

共2頁,第1頁 請在[答案卷、卡]作答

- 1. [20%] True or false? With a reason.
 - (1) The following two matrices

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

are similar.

(2) Let A, B be two m by n matrices over \mathbb{R} . Then

$$Col(A + B) = Col(A) + Col(B)$$

where Col(X) denote the column space of a matrix X.

2. [10%] Let V denote the space of 3 by 3 matrices A over \mathbb{R} such that AS = SA where

$$S = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Find the dimension of V.

3. [10%] Let V denote the complex vector space of 2 by 2 matrices over \mathbb{C} . Let $T: V \to V$ be the linear transformation given by T(X) = AX where

$$A = \begin{bmatrix} -1 & 1 \\ 4 & -4 \end{bmatrix}.$$

Find the rank of T.

4. [10%] Find the minimal polynomial of the 6 by 6 matrix

$$A = egin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

國立清華大學100學年度碩士班入學考試試題

系所班組別:數學系碩士班應用數學組考試科目(代碼):線性代數(0202)

共2頁,第2頁 請在[答案卷、卡]作答

5. [10%] Find the singular value decomposition of the 2 by 3 matrix

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

- 6. [20%] Let T be a linear operator on \mathbb{R}^n and let \mathbf{v} be a nonzero vector in \mathbb{R}^n . The polynomial f(x) is called a T-annihilator for \mathbf{v} if f(x) is a monic polynomial of least degree for which $f(T)(\mathbf{v}) = \vec{0}$.
 - (1) Prove that the T-annihilator for v is unique.
 - (2) Find the T-annihilator for $\mathbf{v}=(1,\sqrt{2},1)\in\mathbb{R}^3$ where

$$T = egin{bmatrix} 2 & -1 & 0 \ -1 & 2 & -1 \ 0 & -1 & 2 \end{bmatrix}.$$

- 7. [20%] Let V be a finite-dimensional complex inner product space and U is a unitary operator on V such that $U(\mathbf{v}) = \mathbf{v}$ implies $\mathbf{v} = \vec{0}$.
 - (1) Show that I U is invertible.
 - (2) Show that $(I+U)(I-U)^{-1}=(I-U)^{-1}(I+U)$.
 - (3) Show that the linear operator $\sqrt{-1}(I+U)(I-U)^{-1}$ is self-adjoint.
 - (4) For a self-adjoint operator T on V, show that $(T \sqrt{-1}I)(T + \sqrt{-1}I)^{-1}$ is unitary.