國立清華大學 101 學年度碩士班考試入學試題

系所班組別:數學系應用數學組

考試科目(代碼):線性代數(0202)

共 $_2$ 頁,第 $_1$ 頁 *請在【答案卷、卡】作答

1. [30%] True or false? With a reason.

- (1) There exists a matrix A such that the vector $(1,1,1) \in \mathbb{R}^3$ is contained in the nullspace of A and the vectors (1,2,-3) and (-2,3,5) is contained in the row space of A.
- (2) If two real n by n matrices A, B are diagonalizable (over \mathbb{R}), then AB is also diagonalizable.
- (3) Let A be a real m by n matrix. If $A^{T}A$ is positive definite, then AA^{T} is also positive definite where A^{T} denotes the transpose of A.
- 2. [10%] Let $T: \mathbf{M}_{4\times 4}(\mathbb{R}) \to \mathbf{M}_{4\times 4}(\mathbb{R})$ be the linear transformation defined by $T(A) := A + A^{\mathrm{T}}$ where $\mathbf{M}_{4\times 4}(\mathbb{R})$ denotes the vector space of real 4 by 4 matrices. Find the rank of T.
- 3. [10%] Let $P: \mathbb{R}^4 \to \mathbb{R}^4$ be the (orthogonal) projection onto the subspace spanned by

$$(1,0,1,0),(0,1,0,1),(1,0,0,1),(1,1,0,0)$$

Find the matrix P.

4. [10%] Find the determinant of the 6 by 6 matrix

5. [10%] Find the decomposition A = QR where

$$A = \begin{bmatrix} 2 & 0 & 8 \\ 1 & 1 & 5 \\ 0 & 0 & 0 \\ 2 & 4 & 3 \end{bmatrix}$$

Q is orthogonal (i.e., $Q^{\mathrm{T}}\cdot Q=I$), and R is upper-triangular.

國立清華大學 101 學年度碩士班考試入學試題

系所班組別:數學系應用數學組

考試科目(代碼):線性代數(0202)

共
$$2$$
頁,第 2 頁 *請在【答案卷、卡】作答

6. [10%] We want to fit a plane z = C + Dx + Ey (in \mathbb{R}^3) to the four points:

$$z = 3$$
 at $x = 1, y = 1;$

$$z = 5$$
 at $x = 2$, $y = 1$;

$$z = 6$$
 at $x = 0$, $y = 3$;

$$z = 0$$
 at $x = 0$, $y = 0$.

- (1) Find 4 equations in 3 unknowns to pass a plane through the points (if there is such a plane).
- (2) Find 3 equations in 3 unknowns for the best least-square solution.

7. [10%] The norm of a real n by n matrix A is the number ||A|| defined by

$$||A|| = \max_{\mathbf{x} \neq \mathbf{0}, \ \mathbf{x} \in \mathbb{R}^n} \frac{||A\mathbf{x}||}{||\mathbf{x}||}$$

where $\|\mathbf{x}\|$ denotes the Euclidean norm of \mathbf{x} . Prove that if A is symmetric, then $\|A\|$ is equal to the largest eigenvalue of A.

8. [10%] Use the inner product defined by

$$\langle p(t), q(t) \rangle = \int_{-1}^{1} p(t)q(t) dt$$

on $\mathbf{P}_3(\mathbb{R})$ (the space of real polynomials of degree less than or equal to 3) and let W be the subspace spanned by $\{t, t^2\}$.

- (1) Find the orthogonal complement W^{\perp} .
- (2) Write the polynomial $1+t+t^2+t^3$ as p(t)+q(t) with $p(t) \in W$ and $q(t) \in W^{\perp}$.