

- 1. Prove that two similar matrices have the same eigenvalues. (10%)
- 2. Let A be a real symmetric $n \times n$ matrix. Prove that (15%)
 - (a) every eigenvalue of A must be real;
 - (b) two eigenvectors corresponding to two distinct eigenvalues of A must be orthogonal.
- 3. (15%)
 - (a) Find the eigenvalues and the eigenvectors of the matrix

$$A = \left[\begin{array}{ccc} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right]$$

(b) Compute

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \ .$$

- 4. Let A be a real $m \times n$ matrix and let b be a real m-vector. Prove that Ax = b is solvable if and only if $b^Ty = 0$ for all y satisfying $A^Ty = 0$. (15%)
- 5. Given a nonsingular $n \times n$ matrix A. Define a norm

$$\parallel C \parallel = \left(\sum_{i,j=1}^{n} |c_{ij}|^{2}\right)^{1/2}$$
 if $C = [c_{ij}]$.

Prove that there is a positive constant δ depending on A such that B is nonsingular for any B satisfying $\parallel B-A\parallel < \delta$. (15%)

6. We define a real $k \times k$ matrix A is positive definite if

$$x^T A x > 0$$
 for all $x \in \mathbb{R}^k \setminus \{0\}$.

Let B be a real $m \times n$ matrix and let

$$A = \left[\begin{array}{cc} I_m & B \\ B^T & I_n \end{array} \right]$$

where $I_m(I_n)$ is the $m \times m(n \times n)$ respectively) identity matrix. Prove that A is positive definite if and only if $0 \le \lambda < 1$ for any eigenvalue λ of B^TB . (20%)

7. Suppose that A and B are real symmetric positive definite $k \times k$ matrices. Prove that every eigenvalue of AB is positive. (10%)