八十七學年度 <u>教學系</u>系(所)應用數學組碩士班研究生入學考試 ^{図目}線性代數 科號 <u>0202 共 2 頁第 / 頁 調在試卷【答案卷】內作答</u>

- 1. (10 points) If A is an $n \times n$ matrix such that $A^2 = A$, show that tr(A) = rank(A).
- 2. (15 points) On \mathbb{R}^4 , let V be the subspace defined by $x_1 = x_4$, $x_2 = x_3$. Denote by $A: \mathbb{R}^4 \to \mathbb{R}^4$ to be the reflection with respect to the subspace V.
 - (a) Find the matrix (with respect to the standard basis in \mathbb{R}^4) representing A.
 - (b) Find the minimal polynomial of A.
- 3. (15 points) If $A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$, and if we know that $A^{10} = \alpha A + \beta I$, find α, β .
- 4. (10 points) If p, q are two orthonormal column vectors in \mathbb{R}^n , and $A = p \cdot p^T + q \cdot q^T$, where p^T is the transpose of p. Find the characteristic polynomial of A.
- 5. (10 points) If A, B are two symmetric matrices. Denote by $\lambda_1(A)$ the smallest eigenvalue of A. Show that

$$\lambda_1(A+B) \ge \lambda_1(A) + \lambda_1(B).$$

- 6. (15 points) If $A = (a_{ij})_{1 \le i, j \le n}$ where $a_{ij} = 1$.
 - (a) Find the rank of A xI in terms of x.
 - (b) Find the optimal x so that A xI is positive definite.
- 7. (15 points) Let $T:V \to V$ be a linear operator. Suppose that v_1 is an eigenvector corresponding to the eigenvalue λ_1 and v_2 is an eigenvector corresponding to the eigenvalue λ_2 , where $\lambda_1 \neq \lambda_2$. Put $v = v_1 + v_2$.
 - (a) Let W be the T-cyclic subspace generated by v, i.e. $W = \operatorname{Span}\{v, Tv, T^2v \cdots\}$. Find the dimension of W.
 - (b) Let T_W be the restriction of T to W. Find the characteristic polynomial of T_W .

科田

八十七學年度	數學系	系(所)應用數學組碩士班研究生力	學考試
線性代數	科號 0202	共 2 萬年 2 首 精在試券【答案	為】 內作答

- 8. (10 points) Let A and B be $m \times n$ matrics. Suppose that $\operatorname{rank}(A) = r_1 \ge \operatorname{rank}(B) = r_2$.
 - (a) Prove that $r_1 \leq \operatorname{rank}[A \ B] = \operatorname{rank}[B \ A] \leq r_1 + r_2$ and prove that $\operatorname{rank}[A + B \ B] = \operatorname{rank}[A \ B]$. Where $[A \ B]$ means the $m \times 2n$ matrix, where A is the first shumatrix, and B is the second matrix, that is $[A \ B] = (c_{ij}), \ c_{ij} = \left\{ \begin{array}{ll} a_{ij} & \text{if} \ 1 \leq j \leq n \\ b_{i,j-n} & \text{if} \ n+1 \leq j \leq 2n. \end{array} \right.$
 - (b) Using the results in (a), prove that $r_1 r_2 \le \operatorname{rank}(A + B) \le r_1 + r_2$.