旗性代數

18

頁 *調在試卷【答案卷】內作答

- 1. (15 points, 5 points for each part) Let $U = \{(x_1, x_2, x_3, x_4)^T | x_1 + 2x_2 + 3x_3 = 0\}$ and $V = \{(x_1, x_2, x_3, x_4)^T | x_1 + x_3 + 2x_4 = 0\}$ be two subspace of \mathbb{R}^4 .
 - (a) Find a basis of U ∩ V.
 - (b) Extend the basis you find in (la) for U ∩ V to a basis for U and to a basis for V.
 - (c) Use the results in (1b) to prove that U+V = R⁴.
- 2. (15 points, 5 points for each part) Let $\vec{e_1} = (1,0,0)^T$, $\vec{e_2} = (0,1,0)^T$ and $\vec{e_3} = (0,0,1)^T$ be the standard basis of \mathbb{R}^3 . For fixed $a, b, c, f, g, h \in \mathbb{R}$, we define a map $L: \mathbb{R}^3 \to \mathbb{R}$ by

$$L(x\,\overrightarrow{e_1}+y\,\overrightarrow{e_2}+z\,\overrightarrow{e_3})=\det\begin{pmatrix} a&x&f\\b&y&g\\c&z&h\end{pmatrix}.$$

- (a) Verify that L is a linear mapping and find the matrix representing L with respect to the ordered basis $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$
- (b) Suppose that $v = a\overrightarrow{e_1} + b\overrightarrow{e_2} + c\overrightarrow{e_3}$ and $w = f\overrightarrow{e_1} + g\overrightarrow{e_2} + h\overrightarrow{e_3}$ are linearly independent. Find the dimension of the kernel of L.
- (c) Suppose that $v = a\overrightarrow{e_1} + b\overrightarrow{e_2} + c\overrightarrow{e_3}$ and $w = f\overrightarrow{e_1} + g\overrightarrow{e_2} + h\overrightarrow{e_3}$ are linearly dependent. Find the dimension of the kernel of L.
- 3. (30 points, 5 points for each part) For an $n \times n$ matrix over \mathbb{R} , we define the null space $N(A) = \{v \in \mathbb{R}^{n \times 1} = \mathbb{R}^n \mid Av = 0\}$ and we define the range $R(A) = \{Av \mid v \in \mathbb{R}^n\}$.

For $v = (a_1, a_2, a_3)^T$, $w = (b_1, b_2, b_3)^T \in \mathbb{R}^3$, define $\langle v, w \rangle = a_1b_1 + a_2b_2 + a_3b_3$ and $\|v\| =$ $\sqrt{\langle v,v \rangle}$. For a subspace V of \mathbb{R}^3 , we define $V^{\perp} = \{w \in \mathbb{R}^3 \mid \langle w,v \rangle = 0, \forall v \in V\}$. Let

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 5 & 0 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 2 \\ -10 \\ 20 \end{pmatrix}.$$

- (a) Find a basis of R(A)[⊥].
- (b) Find the unique p∈ R(A) which is closest to b.
- (c) Let $S = \{x \in \mathbb{R}^3 \mid Ax = p\}$ be the set of solutions to the system Ax = p. Find S.
- (d) Find an orthonormal basis of N(A)¹.
- (e) Find the unique v₀ ∈ S such that v₀ ∈ N(A)[⊥].
- (f) Let v_0 be as in (3e). Show that for all $v \in S$ such that $v \neq v_0$, we have $||v|| > ||v_0||$.
- 4. (15 points, 5 points for each part) For a complex $n \times n$ matrix $A = (a_{ij})_{1 \le i,j \le n}$, we define its trace to be $trA = a_{11} + a_{22} + ... + a_{nn}$. Consider the set S of all complex $n \times n$ matrices satisfying $A^m - I = 0$ for a (fixed) positive integer m.
 - (a) Prove that $|trA| \leq n$ for any $A \in S$.
 - (b) Find the subset $\{A \in \mathbb{S}; |trA| = n\}$.

數學系 系(所) 應數組 八十九學年度 組履士班研究生招生考試 線性代數 0202 頁第一少頁 *誘在試卷 |

- (c) Find the subset $\{A \in \mathbb{S}; trA = n\}$. 5. (10 points, 5 points for each part) Given an idempotent matrix A, i.e. one which satisfying
 - $A^2 = A$.
 - (a) Show that B = I 2A is involutive, i.e. $B^2 = I$. Therefore B is nonsingular.
 - (b) Find all scalars λ for which $I \lambda A$ is nonsingular.
 - by χ_s the real valued function on S given by $\chi_s(t) = 0$ for any $t \neq s$ and $\chi_s(s) = 1$. Consider the vector space $V = \{f: S \to \mathbb{R}\}$ of all real-valued functions on S, and let $\varphi: S \to S$ be a map.
 - (a) Show that $\Phi: V \to V$ defined by $\Phi(f)(t) = f(\varphi(t))$ $(t \in S)$ is linear.

 - (b) Show that $\{\chi_s; s \in S\}$ is a basis for V. (c) Show that the trace of Φ equals to the number of fixed points of φ (a point $t \in S$ is called a fixed point of φ if $\varphi(t) = t$).

6. (15 points, 5 points for each part) Let S be a nonempty finite set, for any given $s \in S$, denote