線性代數 科號 0202 共 1 頁第 1 頁 *請在試卷【答案卷】內作答

NTHU MSc Program Entrance Exam, April 14, 2001

Linear Algebra (Applied Math Program)

Total exam time: 100 minutes. Total 100 points.

- (1) (8%) Let l_{∞} be the vector space of bounded sequences with usual addition and scalar multiplication. Which, if any, of the following sets are bases for l_{∞} ? Explain.
 - (a) $E = \{(1,0,0,\cdots),(0,1,0,0,\cdots),\cdots(0,\cdots,0,1,0,\cdots),\cdots\}$
 - (b) $F = \{(1, 1, 1, \cdots), (0, 1, 1, 1, \cdots), (0, 0, 1, 1, 1, \cdots), \cdots\}$
- (2) (12%) Denote by $\mathcal{M}_{2,2}$ the vector space of all 2×2 matrices and $P \in \mathcal{M}_{2,2}$ a fixed matrix. Let $T: \mathcal{M}_{2,2} \longmapsto \mathcal{M}_{2,2}$ be the linear mapping defined by T(A) = PA. Prove that trace(T) = 2 trace(P).
- (3) Let $A,B \in \mathcal{M}_{n,n}$. Show that
 - (a) (15%) row rank of $AB \leq \text{row rank of } B$.
 - (b) (5%) Use (a) to show that (row rank of AB = row rank of B) if A is nonsingular.
- (4) (15%) Let $A \in \mathcal{M}_{m,m}$, $B \in \mathcal{M}_{m,n}$ and $C \in \mathcal{M}_{n,n}$. Show that

$$\det \left(\begin{array}{cc} A & B \\ 0 & C \end{array} \right) = (\det A)(\det C)$$

- (5) (15%) Let A be a real n × n matrix with real eigenvalues λ₁ < λ₂ < ··· < λ_n. Denote the corresponding left and right eigenvectors by l_i and r_i, i = 1,···, n respectively. Show that ∑_{i=1}ⁿ r_il_i is a nonsingular matrix.
- (6) (15%) Classify all 9×9 matrices with minimal polynomial $(x-2)^3(x-4)^2$ according to their Jordan canonical forms. Show your work.
- (7) (15%) Let A, B be real n × n matrices with A and AB symmetric. In addition, A is positively definite. Show that the eigenvalues of B are real.