九十一學年度<u>數學</u>系(所)<u>應用數學組</u>碩士班研究生招生考試 <u>線性代數</u>科號 0202 共 2 頁第 1 頁 *請在試卷【答案卷】內作答

Linear Algebra (總分 100 分)

(16%) 1.

Determine "true" or "false" for the following statements and give proofs for the true ones.

- (a) det: M_n(R) → R is linear over R, where M_n(R) is the vector space of all the n × n matrices over R.
- (b) If $A, B \in M_n(\mathbb{R})$ are similar then they have the same eigenvectors.
- (c) For $A, B \in M_n(\mathbb{R})$ if $AB = I_n$ (identity matrix) then $BA = I_n$.
- (d) $A \in M_4(\mathbb{R}) \Longrightarrow \det(-A) = -\det A$.

(14%) 2.

Let H be the linear subspace of \mathbb{R}^4 spanned by the vectors (1,1,1,1), (1,0,1,1) and (0,1,1,1). Find the orthogonal projection of the vector (2,3,3,1) on H.

(14%) 3.

Let V be an n-dimensional vector space over R and let $V \xrightarrow{T} V$ be a linear transformation such that the range and null space of T are identical.

- (a) Prove that n must be even.
- (b) Give an example of such a linear transformation for V = R².

(13%) 4.

Let A be an $m \times n$ matrix over \mathbb{R} . Suppose for every $b \in \mathbb{R}^m$, Ax = b has at least one solution x in \mathbb{R}^n . Prove that $A^Ty = 0$ has only one solution in \mathbb{R}^m where A^T is the transpase of A.

九十一學年度<u>數學</u>系(所)<u>應用數學組</u>碩士班研究生招生考試 目<u>線性代數</u>科號 0202 共 2 頁第 2 頁 *請在試卷【答案卷】內作答

(13%) 5.

Show that any $A \in M_n(\mathbb{R})$ which is upper triangular and orthogonal (means $AA^T = I_n$) is a diagonal matrix.

(16%) 6.

Determine, up to similarity, all $A \in M_3(\mathbb{R})$ with $A^3 = A$.

(14%) 7.

Let V be an n-dimensional vector space over \mathbb{R} . Let $(v,w) \longrightarrow \langle v,w \rangle$ be a non-singular bilinear form on $V \times V$. Let $c \in \mathbb{R}$, and let $V \stackrel{A}{\longrightarrow} V$, $V \stackrel{B}{\longrightarrow} V$ be linear transformations such that $\langle Av, Bw \rangle = c \langle v, w \rangle$ for all $v, w \in V$. Prove that det $A \cdot \det B = c^n$.