國 立 清 華 大 學 命 題 紙

 九十二學年度
 數學
 系(所)
 應用數學
 組碩士班研究生招生考試

 科目
 線性代數
 科號
 0202
 共2
 頁第
 1
 頁 *請在試卷【答案卷】內作答

1.(15%) Find the value of c so that the system of linear equations $\begin{cases} x+y+z=1\\ x-y+z=6\\ x+5y+z=c \end{cases}$ has solutions in \mathbb{R}^3 , and in that case, find all the solutions.

2.(15%) Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 0 & 5 \end{bmatrix}$.

- (a) Find a nonsingular matrix P such that PA = B.
- (b) Is P in (a) unique? Give reasons.

3.(15%) (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation that is the reflection with respect to the plane $\{(x, y, z): x + y - 2z = 0\}$. Find the matrix representation of T with respect to the basis $\{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ of \mathbb{R}^3 .

(b) Let $S: \mathbb{R}^3 \to \mathbb{R}^3$ be the reflection with respect to the *xy*-plane, and put A = ST. Find a line L passing through the origin such that A leaves L pointwise fixed.

4.(15%) (a) Let A be a $m \times n$ real matrix, B a $n \times p$ real matrix, prove that $rank(AB) \ge rankA + rankB - n$.

(b) Use (a) to show that if $A_1, ..., A_k$ are $n \times n$ real matrices satisfying $A_1 \cdot ... A_k = 0$, then $rank A_1 + ... + rank A_k \leq (k-1)n$.

5.(15%) Let $A = (a_{ij})$ be a real 3×3 matrix, and $B = (b_{ij})$ the transpose matrix of the corresponding cofactors, that is, $b_{ij} = (-1)^{i+j} \det A_{ji}$ where A_{ij} is the 2×2 matrix obtained from A by deleting its ith row and jth column. Prove that

- (a) if rankA = 3, then rankB = 3;
- (b) if rankA = 2, then rankB = 1.

國 立 清 華 大 學 命 題 紙

 九十二學年度
 數學
 系(所)
 應用數學
 組碩士班研究生招生考試

 科目
 線性代數
 科號
 0202
 共2
 頁第2
 頁 *請在試卷【答案卷】內作答

6.(25%) For each of the following statements, sketch a proof if it is true, explain why or give a counterexample if it is false.

- (a) If a system of linear equations with integral coefficients has real solutions, then there exists rational solutions for the same system.
- (b) Let A, B be real symmetric $n \times n$ matrices, then there exists a nonsingular matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are diagonal matrices.
- (c) If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation satisfying $T^4 = -I$, then n has to be even.
- (d) If A is a singular $n \times n$ real matrix, then there exists a nonzero $n \times n$ matrix B satisfying BA = 0.
 - (e) If a < 0, then $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ a & 0 & 0 & 0 \end{bmatrix}$ is diagonalizable over \mathbb{R} .