Linear Algebra Exam

(15%) Let

$$A = \left(\begin{array}{ccccc} 1 & 0 & -1 & 2 & 1 \\ -1 & 1 & 3 & -1 & 0 \\ -2 & 1 & 4 & -1 & 3 \\ 3 & 1 & -1 & 3 & -4 \end{array}\right).$$

Find a 5×5 real matrix M with rank(M) = 2 such that AM = 0, where 0 is the 4×5 zero matrix.

2. (15%) Let L be the line in \mathbb{R}^3 defined by the linear equations

$$\begin{cases} x_1 - x_2 + x_3 = 0 \\ x_1 + x_2 - x_3 = 0. \end{cases}$$

Let H be the plane in \mathbb{R}^3 that passes through (0,0,0) and has L as its normal line. Let $T:\mathbb{R}^3\to\mathbb{R}^3$ be the linear transformation that fixes L and is a rotation by 180° in the plane H. Find the matrix representation $[T]_\beta$ with respect to the standard basis $\beta=\{e_1,e_2,e_3\}$.

- 3. (15%) Let T: R⁴ → R⁴ be a diagonalizable linear transformation. Prove that R⁴ is T-cyclic (means there exists a v ∈ R⁴ such that {v, T(v), T²(v), T³(v)} is a basis of R⁴) if and only if each eigenspace of T is one-dimensional.
- (18%) Let V be the real vector space of all 2π-periodic smooth functions f: R → R. Define an inner product ⟨,⟩ on V by

$$\langle f, g \rangle = \int_{0}^{2\pi} f(x) g(x) dx, \qquad f, g \in V.$$

Let $T: V \to V$ be a linear operator defined by

$$T[f(x)] = \frac{d^2f}{dx^2}(x) + f(x), \qquad f \in V.$$

Assume that T has an adjoint operator $T^*: V \to V$.

- (a) Show that T: (V, ⟨,⟩) → (V, ⟨,⟩) is self-adjoint.
- (b) Show that the differential equation

$$\frac{d^2f}{dx^2}(x) + f(x) = \cos x, \quad x \in [0, 2\pi]$$

has no solutions f(x) in V.

國立清華大學命題紙

 (12%) Let A be an n × n real symmetric matrix. It is known that there exists an orthonormal basis {v₁, ..., v_n} of ℝⁿ consisting of eigenvectors of A. Let

$$R(x) = \frac{\langle Ax, x \rangle}{\langle x, x \rangle}, \quad x \in \mathbb{R}^n, \quad x \neq 0.$$

Show that $\max_{x \in \mathbb{R}^n, x \neq 0} R(x)$ is the largest eigenvalue of A and $\min_{x \in \mathbb{R}^n, x \neq 0} R(x)$ is the smallest eigenvalue of A. Here \langle , \rangle is the standard inner product of \mathbb{R}^n .

6. (15%) Let

$$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ a & 2 & 0 \\ b & c & 1 \end{array}\right)$$

where $a, b, c \in \mathbb{R}$. Find conditions on a, b and c such that A is diagonalizable. Give your reasons.

- (10%) True or false.
 - (a) Let (V, ⟨,⟩) be a finite dimensional real inner product space and let T: V → V be a self-adjoint linear operator. Then with respect to any ordered basis β of V, the matrix [T]_β is symmetric.
 - (b) Let T: V → W be a linear transformation such that T carries each linearly independent subset of V onto linearly independent subset of W, then (null space of T) = {0}.
 - (c) If the coefficient matrix of a system of m linear equations AX = b in n unknowns has rank m, then the system has a solution.
 - (d) Let T: V → V be a linear operator on a real vector space V, dim V = n. Assume the characteristic polynomial f (x) of T has n real roots, then T is diagonalizable if and only if, for each eigenvalue λ of T, the multiplicity of λ equals n − rank (T − λI).
 - (e) If B is a matrix obtained from a square matrix A by adding k times row i to row j, then det (B) = k det (A).