科目:線性代數(1002)

校系所組:中大數學系甲組、乙組 交大應用數學系乙組

清大數學系純粹數學組、應用數學組

考試時間 100 分鐘, 分數共 100 分.

All vector spaces and matrices in this set of problems are over the real field \mathbb{R} .

- 一、複選題 A (每小題全對才給分, 無部份分數)
- 1. $\boxed{5\%}$ Let V be the vector space of real valued functions on the closed interval [0,1]. Then in the following, pick up the linearly independent sets.
 - (a) The elements are rational functions $\frac{1}{x+1}$, $\frac{1}{x+2}$, $\frac{1}{x+3}$,
 - (b) The elements are rational functions $\frac{1}{(x+1)}$, $\frac{1}{(x+1)^2}$, $\frac{1}{(x+1)^3}$,
 - (c) The elements are polynomial functions 1+x, $1+x+x^2$, $1+x+x^2+x^3$,
 - (d) The elements are polynomials (x+1), $(x+2)^2$, $(x+3)^3$, $(x+4)^4$, ...
 - (e) The elements of trigonometric functions $\cos x$, $\cos 2x$, $\cos^2 x$, $\cos 3x$, $\cos^3 x$,
- 2. 5% Let A, B denote two $n \times n$ matrices satisfying AB = 0. Then in the following, pick up the correct statements.
 - (a) BA = 0,
 - (b) all eigenvalues of BA are 0,
 - (c) $(BA)^2 = 0$,
 - (d) A = 0 or B = 0,
 - (e) rank A+rank B = n.
- 3. [5%] Let A be an $n \times n$ matrix with entries over \mathbb{R} such that $A^2 = -I_n$, where I_n is the $n \times n$ identity matrix. Pick up the correct statements.
 - (a) A can not be a symmetric matrix.
 - (b) n must be even.
 - (c) The rank of A is not zero.
 - (d) The trace of A is not zero.
 - (e) If B is another $n \times n$ matrix with entries over \mathbb{R} such that $B^2 = -I_n$, then A and B are similar.
 - 二、複選題 B (每小題全對才給分, 無部份分數)
- 1. 5% If $T: V \to W$ is a linear map on the vector spaces V and W, then in the following, pick up the correct statements.
 - (a) If V_0 is a subspace of V, then $T(V_0) = \{T(x) \mid x \in V_0\}$ is also a subspace of W.
 - (b) If W_0 is a subspace of W, then $T^{-1}(W_0) = \{x \mid T(x) \in W_0\}$ is also a subspace of V.
 - (c) If T is one-to-one, then T is onto.

科目: 線性代數(1002)

校系所組:中大數學系甲組、乙組 交大應用數學系乙組

清大數學系純粹數學組、應用數學組

- (d) If $U:V\to W$ is another linear map, and T and U agree on a basis for V, then T=U.
- 2. 5% Both A and B are $n \times n$ matrices. Then in the following, pick up the correct statements
 - (a) If A and B are similar, then det(A) = det(B).
 - (b) If A has the rank n, then det(A) = 0.
 - (c) If $M = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ is the $2n \times 2n$ matrix, then $\det(M) = \det(A)\det(B)$, where 0 is the zero matrix.
 - (d) If B is obtained from A by performing an elementary row operation, then there exists an elementary matrix E such that B = AE.
- 3. $\boxed{5\%}$ Let V be a vector space with dimension n. Then in the following, pick up the correct statements.
 - (a) Any linearly independent subset for V containing exactly n vectors is a basis for V.
 - (b) Any finite generating set for V contains at most n vectors.
 - (c) Any two bases for V have the same number of vectors.
 - (d) If $\{v_1, v_2, v_3, \dots, v_{n-1}, v_n\}$ is a basis for V, then $\{v_1, v_1 + 2v_2, v_1 + 2v_2 + 3v_3, v_1 + 2v_2 + 3v_3 + 4v_4, \dots, v_1 + 2v_2 + 3v_3 + \dots + nv_n\}$ is also a basis for V.

三、填充題 (只看結果評分, 無部份分數)

- 1. [5%] Let $\theta < \eta$ denote two eigenvalues of $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$, with $\begin{pmatrix} \theta \\ a \end{pmatrix}$ the eigenvector corresponding to θ and $\begin{pmatrix} \eta \\ b \end{pmatrix}$ the eigenvector corresponding to η . Let $A^{100} = \begin{pmatrix} 1 & c \\ 0 & 2^{100} \end{pmatrix}$. What is a + b + c?
- 2. 5\(\frac{5\pi}{2}\) Determine the minimal polynomial of the matrix

$$\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & -2 & 0 & 0 \\
-2 & 0 & 0 & 0
\end{array}\right).$$

3. 5% Determine the minimal polynomial of the matrix

$$\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & -2 & 0 & 0 \\
-2 & 0 & 0 & 0
\end{array}\right)^{-1}.$$

台灣聯合大學系統97學年度碩士班考試命題紙

科目: 線性代數(1002)

校系所組:中大數學系甲組、乙組 交大應用數學系乙組

清大數學系純粹數學組、應用數學組

4. 5% Determine the characteristic polynomial of the matrix

$$\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
2 & 3 & 4 & 5 & 6
\end{array}\right).$$

5. 5% Let V be the set of polynomials of degree 5 or less in x over \mathbb{R} and $D:V\to V$ is defined by $D(p(x))=\frac{d}{dx}(p(x))$. Find the trace of D.

四、計算證明題 (依解答的完整性評分)

1. $\boxed{9\%}$ Find a 3×3 matrix A such that

$$2x^{2} + 2y^{2} + 2z^{2} - 2xy - 2yz - 2zx = \begin{pmatrix} x & y & z \end{pmatrix} AA^{t} \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

where A^t is the transpose of A.

- 2. 9% Let A be an $n \times m$ matrix of rank r such that every set of r rows and every set of r columns is linearly independent. Prove that every $r \times r$ submatrix of A is nonsingular.
- 3. 9% Let A be an $n \times n$ matrix, and we have

$$A^3 + 3A^2 - A = 3I_n,$$

where I_n is the $n \times n$ identity matrix. Then prove that A is diagonalizable.

4. [9%] Let $T:V\to W$ and $U:W\to Z$ be linear maps on the finite dimensional vector spaces V,W and Z. Then prove

$$\operatorname{Rank}(UT) \leq \operatorname{Rank}(U),$$

 $\operatorname{Rank}(UT) \leq \operatorname{Rank}(T),$

where UT is the composite map of U and T, and Rank(f) is the rank of the map f.

5. $\boxed{9\%}$ Let $T:V\to W$ be a surjective linear map on the vector spaces V and W, let N(T) be the null space of T, and suppose V,W have the bases α,β respectively. Then prove

$$N(T) \oplus W \cong V$$
,

where the vector space $N(T) \oplus W = \{(x,y) \mid x \in N(T), y \in W\}$ has the operations

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

 $c(x, y) = (cx, cy), c \in \mathbb{R}.$

Note: V and W are not necessarily finite dimensional vector spaces.