EE 2030 Linear Algebra Spring 2011

Solution to Homework Assignment No. 1

1. (a) Perform elimination as follows:

1 2 1 3 1 2 1 3
3 -1 =3 | -1 — | 0 =7 —6 | —10 | (subtract 3 x row 1)
2 3 1 4 | 0 -1 —1 —2 | (subtract 2 x row 1)
1 2 1 3]
— 0 -7 —6 | —10
[0 0 3 —2 | (subtract 1/7 x row 2)
This system is equivalent to
1 2 1 x 3
0 -7 —6 y | =1 —10
1 4

Then we can solve the equations by back substitution as

rT+2y+z2=3 r=3-2y—=z r=3
—Ty—62=-10 = (¢ —Ty=-10+62 = y=—-2
—1z=-% z2=4 z=4.

The pivots are 1, =7, and —1/7, and the solution is (z,y, 2) = (3, —2,4).

(b) Perform elimination as follows:

0 -1 -1 1 0 11 1 1 6 (exchange row 1 and 2)
11 1 1 6 0 -1 -1 1 0
2 04 1 2| 1| |2 4 1 —2| -1
3 1 =2 2 3 |3 1 -2 2 3
1 1 1 1 6 ]
0O -1 -1 1 0
— o0 2 -1 -4 | -13 (subtract 2 x row 1)
| 0 =2 =5 —1 | —15 | (subtract 3 x row 1)
11 1 1 6 ]
0 -1 -1 1 0
— |0 0 -3 —2 | 13| (add 2 x row 2)
|0 0 =3 =3 | —15 | (subtract 2 x row 2)
(11 1 1 6 ]
. 0 -1 -1 1 0
0 0 -3 -2 —13
00 0 -1 —2 | (subtract row 3)




This system is equivalent to

1 1 1 1 x 6
0 -1 -1 1 y| | o0
0 0 -3 -2 z | | —13
0O 0 0 -1 t -2

Then we can solve the equations by back substitution as

r+y+z+t=06 r=6—y—z—t xr =
-3z —2t=-13 —3z=—-13+2t z =
The pivots are 1, —1, —3, and —1, and the solution is (x, y, z,t) = (2, -1, 3,2).
2. Perform elimination as follows:
2 -1 0 0 (2 -1 0 0 ]
-1 2 -1 0 | Ey |0 2 -1 0 (add 1/2 x row 1)
o -1 2 -1 o -1 2 -1
0 0 -1 2 0 0 -1 2 |
(2 -1 0 0 ]
E, |0 3 -1 0
=10 0 1 —1| (add 2/3 x row 2)
| 0 0 -1 |
(2 -1 0 0 ]
E, |0 3 -1 0
1o 0 -1
|0 0 0 5 | (add3/4 x row 3)
This process can be expressed by
1 000 10 00 1 000 2 -1 0 0 2 -1
0100 01 00 100 —12—10_0%
00 10 O%lO 0010 0o -1 2 -1 [0 O
0 0 % 1 00 01 00 01 0O 0 -1 2 0 O
Therefore, we have
1 0 00 10 00 1 0 00
10100 0100 3100
Bs=lgoq1 0| F2=|ozq o ™mBa=]501
00 % 1 00 01 0 001
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Since we cannot obtain three nonzero pivots, A~ does not exist.
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(a) Using the Gauss-Jordan method, we can have
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Applying these three elimination steps to the identity matrix I yields
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(b) Using the Gauss-Jordan method, we can have
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The inverse is hence
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4. Performing elimination, we can have

a a a a a a a a
A_|@ b b b £]> 0 b—a b—a b—a | (subtract row 1)
a b c c 0 b—a c—a c—a | (subtract row 1)
a b c d | 0 b—a c—a d—a | (subtract row 1)
[a «a a a |
E 0 b—a b—a b—a
= 0 0 c¢—b c—0b | (subtract row 2)
|0 0 c¢—b d—b | (subtract row 2)
[a «a a a |
E 0 b—a b—a b—a | =U.
= 0 0 c—b c—b
0 0 0 d—c | (subtract row 3)
This procedure can be viewed as
E3E2E1A:U
where
1 000 1 0 00 1 0 0 0
-1 100 0 1 00 01 0 O
Ev=l g0 o P20 o100 ™B=100 1 0
-1 0 01 0 -1 0 1 00 —1 1

Recording the elimination steps and changing the signs of the off-diagonal elements,
we can have

L=E'E,;'E;' =

— = s
T )
—_ =0 O
_— o O O

We can therefore obtain A = LU as

a a a a 1 000 a a a a

a bbb |1 100 0 b—a b—a b—a
a b cc| |1110 0 0 c—b c—b
a b ¢ d 1 1 11 0 0 0 d—c

For A to have four pivots, the four conditions are:

a#0, a#b, b# ¢, and ¢ # d.

5. (a) Performing elimination, we can have

1 3 5 1 3 5 135 135
A—|312 18| E2|o 3 3 |Ea|os33|E2|p33|-U
5 18 30 5 18 30 03 5 00 2



This procedure can be viewed as

EnEqExnA=U

where
1 00 1 00 1 0 0
E21 = -3 1 0 s E31 = 0 10 s and E32 = 0 1 0
0 01 -5 01 0 -1 1

Recording the elimination steps and changing the signs of the off-diagonal
elements, we can have

100
L=E,'E;]E;) =3 10
5 1 1
We also find that U = DLT where
100
D=0 30
00 2
We can therefore obtain A = LDL” as
1 3 5 1 00 100 1 35
312 18| =131 0 030 01 1
5 18 30 5 1 1 00 2 00 1

Performing elimination, we can have
a b | Ey | a b _
S VR PR B
This procedure can be viewed as
EglA = U

where

E21={_g
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We also find that U = DLT where
a 0
D—{Od—%l

We can therefore obtain A = LDL” as
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6.

(a)

(Lower triangular case)

Suppose L is an n x n lower triangular matrix with unit diagonal. We can
use the Gauss-Jordan method to check if it has a full set of n pivots, which
implies the matrix is invertible. We only need to do the Gaussian part. It
means that the required operations are only to subtract the ith row from the
jth row for ¢ < j. Therefore, we can have

L 1] - L, 1 1o 1 -

. 0 0

| lna lpmo1 1 0 0 ]

1 0 0 1 0 07
L S R

R L

_O 0 1 12,1 liz,nfl 1_

Because the matrix has a unit diagonal, it has n pivots and L™ is lower tri-
angular with unit diagonal. The upper triangular case can be proved similarly.

(Lower triangular case)

Suppose A and B are two n x n lower triangular matrices with unit diagonal.
We have A;; = 0if i < jand A;; = 1if i = j, and B;; = 0if 7« < j and
Bi;=1ifi=j. For1l<i<j<mn,wehave

(AB)Z,] - ZAi,kBk,j
k=1

Jj—1 n
= Y AisBrj+ > AixBij
k=1 k=j

= 040 (By; =0when k < j,and A;, =0 when i < j <k.)
= 0.

Therefore, AB is lower triangular. For 1 <17 = j < n, we have
(AB)i; = Y _ AixBu,
k=1

i—1 n
= Z Ai,k‘Bk,i + Ai,iBi,i + Z Ai,kBk‘,i

k=1 k=i+1
= 0+4+1-1+0 (Bk,z =0 when k < 7;, Ai,i :Bi,’i = 1, and AL]{ =0 when 7 < k)
1.

Therefore, AB has a unit diagonal. We can conclude that AB is also lower
triangular with unit diagonal. The upper triangular case can be proved sim-
ilarly.



(¢) (Lower triangular case)
Let L be an n x n lower triangular matrix and D be a diagonal matrix with
diagonal elements d;, ds,..., d,,. We can have

B ll,l 0 Ce 0 dl 0 Ce 0
D - |1 e o 0 dy :
R - 0 RO |
L ln,l e ln,nfl ln,n 0o - 0 dn
[ dlll,l 0 s 0
_ d112,1 d2l2,2 :
: 0
L dlln,l T dn—lln,n—l dnln,n
and
B dl 0 ce 0 ll,l 0 . 0
DL = 0 dy "o log lap :
| ST T 0
L 0o - 0 dn ln,l T ln,n—l ln,n
[ d1l171 0 s 0
_ d2l2,1 d2l2,2 ;
: . 0
L dnln,l o dnln,n—l dnln,n

Therefore, the product of a lower triangular matrix and a diagonal matrix
is still a lower triangular matrix. The upper triangular case can be proved
similarly.

(a) (i) By 6.(a), Ly and U;,"' both exist. Given A = L;D,\U, and A =
L>;D,U,, we can have

L,D,U, = L,D,\U,
— L' (L,D,U,)U,"' = L;(L,D,U,)U;"
— L;'L,D,=D,U,U;".

(ii) By 6.(a), L;" is lower triangular with unit diagonal. By 6.(b), L;'L,
is lower triangular with unit diagonal. Therefore, by 6.(c), Ly LyDs is
lower triangular. Similarly, DU U, " is upper triangular.

(b) Let M = L;'LyD, = DU, U,". Then M is both lower and upper trian-
gular, which implies that M is a diagonal matrix.

(i) Since U,U;" has a unit diagonal, M = DU ,U, " has the same diagonal
as Dy. It implies that M = D;. Similarly, we can have M = D,.
Therefore, Dy = D».

(ii) For M = L;'LyDy = D,, we have L7 'L, = I. Since the inverse matrix
is unique, we have Ly = (L{')™! = L.
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(iii) Similarly, for M = D,U,U,;' = D;, we have U;U,"' = I. It then
implies that U; = (U,")™! = U,.

8. First do row exchange as

01 2 p 2 11
A=103 8| =103 8| =PA
2 11 01 2
and then perform elimination as
2 11 E 2 1 1
03 8[=21]03 8 =U
01 2 00 —32
Then we have
E;(PA)=U
where
0 01 1 0 0
P = 010 ,and E32: 0 1 0
1 00 0 —% 1
We can have
1 00
L=Ej=|010
0 5 1
The factorization PA = LU is hence given by
0 01 01 2 1 00 21 1
010 03 8(=]0120 03 8
100|211 031|100 -3

01 2 > 01 2
A=]0 3 8| =100 2
2 11 2 11
and then do row exchange as
01 2 01 2 2 11
002|211 |£2l012]=0
2 11 00 2 0 0 2
Therefore,
U, =Py, P»EnA
where
010 1 00 1 00
P21— 1 00 ,P32— 0 01 ,andEglz -3 10
0 01 010 0 0 1



Multiplying E5;' P53, P5)' from the left to both sides, we can have

A=E,'P,P,'/U, =L P U,

where
1 00 010 0 1
P, =P,)P;)=|0 0 1 100|=]00
010 0 01 10
and
1 00
Li=E;=|310
0 01
The factorization A = L P,U is hence given by
01 2 1 00 010 2 11
0 38|=13120 0 01 0 1
2 11 0 01 1 00 0 2
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