
EE 2030 Linear Algebra Spring 2011

Solution to Homework Assignment No. 3

1. First, we apply elimination to transform A into the reduced row echelon (RRE)
form:

A =

 0 1 2 3 4
0 1 2 4 6
0 0 0 1 2

 =⇒ R =

 0 1 2 0 −2
0 0 0 1 2
0 0 0 0 0

 .

We can have R = EA, where

E =

 1 0 −3
−1 1 0
1 −1 1

 .

A basis for the row space is given by

βrow =




0
1
2
0
−2

 ,


0
0
0
1
2


 .

Since columns 2 and 4 are the pivot columns of R, we know in class that a basis
for the column space can be formed by columns 2 and 4 of A, i.e.,

βcolumn =


 1

1
0

 ,

 3
4
1

 .

On the other hand, the vectors in the nullspace satisfy

 0 1 2 0 −2
0 0 0 1 2
0 0 0 0 0




x1

x2

x3

x4

x5

 =

 0
0
0

 .

Since x2, x4 are pivot variables and x1, x3, x5 are free variables, a basis for the
nullspace can be given by the three special solutions:

βnull =




1
0
0
0
0

 ,


0
−2
1
0
0

 ,


0
2
0
−2
1


 .

Finally, since the last row of R is a zero row, a basis for the left nullspace can be
given by the last row of E:

βleft =


 1

−1
1

 .



2. (a) Let A, B, C be n× n matrices with ak, bk, and ck denoting the kth row of
A, B, and C, respectively. Now since C = AB, we have

ci = aiB =
n∑

j=1

aijbj for any 1 ≤ i ≤ n

which shows that the rows of C are linear combinations of the rows of B.
Therefore, it follows that

cTi ∈ C(BT ) for any 1 ≤ i ≤ n. (1)

On the other hand, the rank of C is the maximum number of linearly inde-
pendent rows in C, which of course cannot exceed the dimension of C(BT )
because of (1). As a result, we have

rank(C) ≤ dim(C(BT )) = rank(B).

(b) From C = AB we may obtain CT = BTAT by taking transpose on both
sides. It now follows from part (a) that

rank(CT ) ≤ rank(AT ).

Together with the fact that

rank(C) = rank(CT ) and rank(AT ) = rank(A)

we finally arrive at

rank(C) = rank(CT ) ≤ rank(AT ) = rank(A).

3. (a) Let

A ,
[
1 2 2 3
1 3 3 2

]
so that S = C(AT ). In class we know that

S⊥ = C(AT )⊥ = N (A).

Hence we solve the system of linear equations:

[
1 2 2 3
1 3 3 2

]
x1

x2

x3

x4

 =

[
0
0

]

which leads to two vectors (0,−1, 1, 0) and (−5, 1, 0, 1) spanning S⊥.

(b) Let
B ,

[
1 1 1 1

]
so that P = N (B). We also learn in class that

P⊥ = N (B)⊥ = C(BT ).

Since B contains a single row, we know that (1, 1, 1, 1) is a basis for P⊥.

2



4. Applying elimination to the system of linear equations[
1 0 2
1 1 4

] x1

x2

x3

 =

[
0
0

]
leads to a basis for N (A) given by w = (−2,−2, 1)T . The orthogonality between
w and C(AT ) can be verified by

[
1 0 2

]  −2
−2
1

 = 0 and
[
1 1 4

]  −2
−2
1

 = 0.

To split x = (3, 3, 3)T into xr + xn, we first project x onto N (A) so that

xn =
wTx

wTw
w = −w =

 2
2
−1

 .

Finally, it follows that

xr = x− xn =

 3
3
3

−

 2
2
−1

 =

 1
1
4

 .

5. (a) In class we know the projection of b onto the column space of A is given by

p = Ax̂ (2)

where x̂ is the solution to
ATAx̂ = ATb. (3)

In our case, (3) is explicitly given by[
2 1
1 1

] [
x̂1

x̂2

]
=

[
5
2

]
and hence

x̂ =

[
x̂1

x̂2

]
=

[
3
−1

]
.

It now follows from (2) that

p =

 1 1
0 0
1 0

[ 3
−1

]
=

 2
0
3


and the error is thus

e = b− p =

 2
4
3

−

 2
0
3

 =

 0
4
0

 .

The orthogonality between e and the columns of A can be verified by

[
1 0 1

]  0
4
0

 = 0 and
[
1 0 0

]  0
4
0

 = 0.
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(b) Applying (3) and (2) we obtain

x̂ =

[
−2
6

]
and p =

 1 1
0 1
1 1

[ −2
6

]
=

 4
6
4

 .

The error is now given by

e = b− p =

 4
6
4

−

 4
6
4

 =

 0
0
0

 .

Obviously e is orthogonal to the columns of A. Note that actually b ∈ C(A)
because  4

6
4

 = −2

 1
0
1

+ 6

 1
1
1

 .

Hence projecting b onto C(A) results in b itself.

6. (a) In class we know the projection matrix projecting a vector onto the column
space of A is given by

P = A(ATA)−1AT (4)

where A is assumed to have full column rank so that (ATA)−1 exists.

Unfortunately, the matrix

A =

[
2 4 4
5 10 10

]
does not have full column rank because its columns are linearly dependent.
As a result we cannot apply (4) directly. However, a closer look at A reveals
that its column space is actually spanned by a single vector, say

vC =

[
2
5

]
.

Since vC has full column rank, we may apply (4) and obtain

P C =

[
2
5

]
· 1

29
·
[
2 5

]
=

[
4/29 10/29
10/29 25/29

]
.

(b) Let B , AT =

 2 5
4 10
4 10

 so that C(AT ) = C(B). Since the column space of

B is spanned by a single vector vR =

 2
4
4

, we may apply (4) to obtain

P R =

 2
4
4

 · 1

36
·
[
2 4 4

]
=

 1/9 2/9 2/9
2/9 4/9 4/9
2/9 4/9 4/9

 .

4



After some calculations we discover that

P CAP R =

[
2 4 4
5 10 10

]
= A.

This result follows from the facts that

P CA = A and AP R = A.

To explain why, we let x be a vector. Since Ax ∈ C(A) and ATx ∈ C(AT ),
it follows that

(P CA)x = P C(Ax) = Ax

and
(P T

RA
T )x = P T

R(A
Tx) = PR(A

Tx) = ATx.

Since x is arbitrary, we must have

P CA = A and P T
RA

T = AT (or AP R = A).

Using these two facts, we may obtain

P CAP R = (P CA)P R = AP R = A.

7. (a) Let

A1 ,


1 0 0
1 1 1
1 3 9
1 4 16

 , x̂1 ,

 C1

D1

E1

 , and b1 ,


0
8
8
20

 .

In class we learn the choice of x̂1 which minimizes ∥e∥2 is given by solving

AT
1A1x̂1 = AT

1 b1

which yields  4 8 26
8 26 92
26 92 338

 C1

D1

E1

 =

 36
112
400

 .

Therefore,

x̂1 =

 C1

D1

E1

 =

 2
4/3
2/3

 .

The closest parabola is hence b = 2 + (4/3)t + (2/3)t2. The projection of b1
onto C(A1) is

p1 = A1x̂1 =


1 0 0
1 1 1
1 3 9
1 4 16


 2

4/3
2/3

 =


2
4
12
18

 .
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Finally, the error is given by

e1 = b1 − p1 =


0
8
8
20

−


2
4
12
18

 =


−2
4
−4
2


with ∥e1∥2 = (−2)2 + 42 + (−4)2 + 22 = 40.

(b) Computations similar to part (a) can be carried out by letting

A2 ,


1 0 0 0
1 1 1 1
1 3 9 27
1 4 16 64

 , x̂2 ,


C2

D2

E2

F2

 , and b2 ,


0
8
8
20

 .

However, there is no need for such amount of computation in this problem!
A simple check will confirm that the columns of A2 are linearly independent.
Hence C(A2) = R4. Now since b2 ∈ R4 = C(A2), we should be able to fit a
curve without any error! The exact coefficients of the curve can be determined
by solving

A2x̂2 = b2

or equivalently, 
1 0 0 0
1 1 1 1
1 3 9 27
1 4 16 64




C2

D2

E2

F2

 =


0
8
8
20

 .

Applying elimination yields

x̂2 =


C2

D2

E2

F2

 =


0

47/3
−28/3
5/3

 .

Therefore, the closest cubic is given by b = (47/3)t− (28/3)t2 + (5/3)t3. The
error in this case is of course

e2 = b2 − p2 = b2 − b2 = 0 with ∥e2∥2 = 0.

8. (a) Let y , Ax and z , ATy. Since

∂

∂xk

∥Ax∥2 = ∂

∂xk

∥y∥2 = ∂

∂xk

m∑
i=1

y2i =
m∑
i=1

2yi
∂yi
∂xk

and
∂yi
∂xk

=
∂

∂xk

n∑
j=1

Aijxj = Aik = AT
ki
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we have
∂

∂xk

∥Ax∥2 = 2
m∑
i=1

AT
kiyi = 2zk.

Collecting the partial derivatives yields
∂

∂x1
∥Ax∥2
...

∂
∂xn

∥Ax∥2

 =

 2z1
...

2zn

 = 2z = 2ATy = 2ATAx.

(b) Let w , ATb; then we have

∂

∂xk

(
2bTAx

)
=

∂

∂xk

(
2

m∑
i=1

biyi

)
= 2

m∑
i=1

AT
kibi = 2wk.

Collecting the partial derivatives yields
∂

∂x1

(
2bTAx

)
...

∂
∂xn

(
2bTAx

)
 =

 2w1
...

2wn

 = 2w = 2ATb.

(c) Finally, we obtain

∂

∂xk

∥Ax− b∥2 = ∂

∂xk

∥Ax∥2 − ∂

∂xk

(2bTAx) = 2zk − 2wk.

Collecting the partial derivatives yields
∂

∂x1
∥Ax− b∥2

...
∂

∂xn
∥Ax− b∥2

 =

 2z1 − 2w1
...

2zn − 2wn

 = 2 (z −w) = 2
(
ATAx−ATb

)
.

Hence the partial derivatives of ∥Ax− b∥2 are zero when ATAx = ATb.
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