
EE 2030 Linear Algebra Spring 2011

Solution to Homework Assignment No. 4

1. Since the columns of A are independent, let a1 = (1, 1, 0)T , a2 = (1, 0, 1)T , and
a3 = (0, 1, 1)T . By the Gram-Schmidt process, we can have
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2. (a) Consider

AT =

[
2 1 2
1 1 1

]
RRE
=⇒ R =

[
1 0 1
0 1 0

]
.

Since (1, 0, 1) · (0, 1, 0) = 0 and {(1, 0, 1), (0, 1, 0)} forms a basis of the column
space of A, we can obtain
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 and q2 =

0
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0

 .

For AT , (−1, 0, 1) is a special solution. That is to say, (−1, 0, 1) is orthogonal
to the column space of A. Since q1 and q2 span the column space of A, we
can choose

q3 =
1√
2

−1
0
1

 .

(b) Since q3 is a special solution to ATx = 0, the left nullspace of A contains q3.



(c) Form (a), we have
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Then we can obtain the solution
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3. Since ∫ 1

−1

1 · xdx =

∫ 1

−1

xdx = (x2/2)
∣∣x=1

x=−1
= 0∫ 1

−1

1 · [x2 − (1/3)]dx =

∫ 1

−1

[x2 − (1/3)]dx = [x3/3− (1/3)x]
∣∣x=1

x=−1
= 0∫ 1

−1

x · [x2 − (1/3)]dx =

∫ 1

−1

[x3 − (1/3)x]dx = [x4/4− (1/6)x2]
∣∣x=1

x=−1
= 0

we know that 1, x, and x2 − (1/3) are orthogonal, when the integration is from
x = −1 to x = 1. Furthermore, f(x) = 2x2 = (2/3) · 1 + 0 · x + 2 · [x2 − (1/3)].

4. For the first matrix, doing Gaussian elimination, we have
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

 =⇒


1 2 3 4
0 −10 −20 −30
0 0 0 0
0 0 0 0

 .

Its determinate is equal to 1 · (−10) · 0 · 0 = 0.

For the second matrix, doing Gaussian elimination, we have
1 t t2 t3

t 1 t t2

t2 t 1 t
t3 t2 t 1

 =⇒


1 t t2 t3

0 1− t2 t− t3 t2 − t4

0 0 1− t2 t− t3

0 0 0 1− t2

 .

Its determinate is equal to 1 · (1− t2) · (1− t2) · (1− t2) = (1− t2)3.

5. For the big formula, the determinant of A is the sum of 5! = 120 simple determi-
nants, times 1 or −1, and every simple determinant chooses one entry from each
row and column. If some simple determinant of A avoids all the zero entries in A,
then it cannot choose one entry from each column. Thus every simple determinant
of A must choose at least one zero entry, and hence all 120 terms are zero in the
big formula for detA. That is to say, the determinant of this matrix is zero.
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6. Let Dn = |An| where An is an n by n matrix. For n ≥ 3, we have

Dn =

∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0
1
0 An−1
...
0

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 0 · · · 0
1 1 −1 0 · · · 0
0 1
0 0 An−2
...

...
0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Applying the cofactor formula to the first row, we can have

Dn = 1 · (−1)1+1|An−1|+ (−1) · (−1)1+2

∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0
0
0 An−2
...
0

∣∣∣∣∣∣∣∣∣∣∣
= Dn−1 + 1 · (−1)1+1|An−2| (apply the cofactor formula to the first column)

= Dn−1 + Dn−2.

7. Since the matrix A is symmetric, the inverse of A is also symmetric. Then from
the cofactor formula, we can have detA = 4 and
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4
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(
A−1
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∣∣∣∣ −1 2
0 −1

∣∣∣∣
4

=
1

4

(
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=
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detA
=

−
∣∣∣∣ 2 −1

0 −1

∣∣∣∣
4

=
1

2

(
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=
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detA
=

∣∣∣∣ 2 −1
−1 2

∣∣∣∣
4

=
3

4
.

Therefore, we can obtain the inverse of A as

A−1 =
1

4

 3 2 1
2 4 2
1 2 3

 .
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Similarly, since the matrix B is symmetric, the inverse of B is also symmetric.
Then from the cofactor formula, we can have detB = 1 and

(
B−1

)
11

=
C11

detB
=

∣∣∣∣ 2 2
2 3

∣∣∣∣
1

= 2

(
B−1

)
21

=
C12

detB
=

−
∣∣∣∣ 1 2

1 3

∣∣∣∣
1

= −1

(
B−1

)
22

=
C22

detB
=

∣∣∣∣ 1 1
1 3

∣∣∣∣
1

= 2

(
B−1

)
31

=
C13

detB
=

∣∣∣∣ 1 2
1 2

∣∣∣∣
1

= 0

(
B−1

)
32

=
C23

detB
=

−
∣∣∣∣ 1 1

1 2

∣∣∣∣
1

= −1

(
B−1

)
33

=
C33

detB
=

∣∣∣∣ 1 1
1 2

∣∣∣∣
1

= 1.

Therefore, we can obtain the inverse of B as

B−1 =

 2 −1 0
−1 2 −1
0 −1 1

 .

8. For the first system, we have 2 1 −3
4 5 1
−2 −1 4

x1

x2

x3

 =

0
8
2

 .

Using Cramer’s rule, we can obtain

x1 =

∣∣∣∣∣∣
0 1 −3
8 5 1
2 −1 4

∣∣∣∣∣∣∣∣∣∣∣∣
2 1 −3
4 5 1
−2 −1 4

∣∣∣∣∣∣
= 4, x2 =

∣∣∣∣∣∣
2 0 −3
4 8 1
−2 2 4

∣∣∣∣∣∣∣∣∣∣∣∣
2 1 −3
4 5 1
−2 −1 4

∣∣∣∣∣∣
= −2, and x3 =

∣∣∣∣∣∣
2 1 0
4 5 8
−2 −1 2

∣∣∣∣∣∣∣∣∣∣∣∣
2 1 −3
4 5 1
−2 −1 4

∣∣∣∣∣∣
= 2.

For the second system, we have
1 1 0 0
0 1 1 −2
1 0 2 1
1 1 0 1



x1

x2

x3

x4

 =


0
1
0
0

 .
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Using Cramer’s rule, we can obtain

x1 =

∣∣∣∣∣∣∣∣
0 1 0 0
1 1 1 −2
0 0 2 1
0 1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 0 0
0 1 1 −2
1 0 2 1
1 1 0 1

∣∣∣∣∣∣∣∣
= −2

3
, x2 =

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 1 −2
1 0 2 1
1 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 0 0
0 1 1 −2
1 0 2 1
1 1 0 1

∣∣∣∣∣∣∣∣
=

2

3

x3 =

∣∣∣∣∣∣∣∣
1 1 0 0
0 1 1 −2
1 0 0 1
1 1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 0 0
0 1 1 −2
1 0 2 1
1 1 0 1

∣∣∣∣∣∣∣∣
=

1

3
, and x4 =

∣∣∣∣∣∣∣∣
1 1 0 0
0 1 1 1
1 0 2 0
1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 0 0
0 1 1 −2
1 0 2 1
1 1 0 1

∣∣∣∣∣∣∣∣
= 0.
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