
EE 2030 Linear Algebra Spring 2012

Solution to Homework Assignment No. 1

1. (a) We first perform forward elimination: 2 3 1 8
4 7 5 20
0 −2 2 0

 =⇒

 2 3 1 8
0 1 3 4
0 −2 2 0

 (subtract 2 × row 1)

=⇒

 2 3 1 8
0 1 3 4
0 0 8 8


(add 2 × row 2).

Then we obtain the pivots as 2, 1, and 8, and the solution can be solved by
back substitution as follows:

equation 3: 8z = 8 gives z = 1

equation 2: 1y + 3 = 4 gives y = 1

equation 1: 2x + 3 + 1 = 8 gives x = 2.

We have (x, y, z) = (2, 1, 1).

(b) We perform forward elimination first: 2 −3 0 3
4 −5 1 7
2 −1 −3 5

 =⇒

 2 −3 0 3
0 1 1 1
2 −1 −3 5

 (subtract 2 × row 1)

=⇒

 2 −3 0 3
0 1 1 1
0 2 −3 2


(subtract 1 × row 1)

=⇒

 2 −3 0 3
0 1 1 1
0 0 −5 0


(subtract 2 × row 2).

The pivots are 2, 1, and −5. We then do back substitution to get the solution:

equation 3: −5z = 0 gives z = 0

equation 2: y + 0 = 1 gives y = 1

equation 1: 2x− 3 = 3 gives x = 3.

The solution is (x, y, z) = (3, 1, 0).



2. (a) We use the Gauss-Jordan method to find the inverse of A:

[
A I

]
=


2 −1 0 0 1 0 0 0
−1 2 −1 0 0 1 0 0
0 −1 2 −1 0 0 1 0
0 0 −1 2 0 0 0 1


E21=⇒


2 −1 0 0 1 0 0 0
0 3/2 −1 0 1/2 1 0 0
0 −1 2 −1 0 0 1 0
0 0 −1 2 0 0 0 1


E32=⇒


2 −1 0 0 1 0 0 0
0 3/2 −1 0 1/2 1 0 0
0 0 4/3 −1 1/3 2/3 1 0
0 0 −1 2 0 0 0 1


E43=⇒


2 −1 0 0 1 0 0 0
0 3/2 −1 0 1/2 1 0 0
0 0 4/3 −1 1/3 2/3 1 0
0 0 0 5/4 1/4 1/2 3/4 1


E34=⇒


2 −1 0 0 1 0 0 0
0 3/2 −1 0 1/2 1 0 0
0 0 4/3 0 8/15 16/15 8/5 4/5
0 0 0 5/4 1/4 1/2 3/4 1


E23=⇒


2 −1 0 0 1 0 0 0
0 3/2 0 0 9/10 9/5 6/5 3/5
0 0 4/3 0 8/15 16/15 8/5 4/5
0 0 0 5/4 1/4 1/2 3/4 1


E12=⇒


2 0 0 0 8/5 6/5 4/5 2/5
0 3/2 0 0 9/10 9/5 6/5 3/5
0 0 4/3 0 8/15 16/5 8/5 4/5
0 0 0 5/4 1/4 1/2 3/4 1


D−1

=⇒


1 0 0 0 4/5 3/5 2/5 1/5
0 1 0 0 3/5 6/5 4/5 2/5
0 0 1 0 2/5 4/5 6/5 3/5
0 0 0 1 1/5 2/5 3/5 4/5


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where

E21 =


1 0 0 0

1/2 1 0 0
0 0 1 0
0 0 0 1

 , E32 =


1 0 0 0
0 1 0 0
0 2/3 1 0
0 0 0 1

 , E43 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 3/4 1



E34 =


1 0 0 0
0 1 0 0
0 0 1 4/5
0 0 0 1

 , E23 =


1 0 0 0
0 1 3/4 0
0 0 1 0
0 0 0 1

 , E12 =


1 2/3 0 0
0 1 0 0
0 0 1 0
0 0 0 1



D−1 =


1/2 0 0 0
0 2/3 0 0
0 0 3/4 0
0 0 0 4/5

 .

Thus we have

A−1 =
1

5


4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4

 .

(b) We use the Gauss-Jordan method to find B−1:

[
A I

]
=


2 −1 0 −1 1 0 0 0
−1 2 −1 0 0 1 0 0
0 −1 2 −1 0 0 1 0
−1 0 −1 2 0 0 0 1


E21=⇒


2 −1 0 −1 1 0 0 0
0 3/2 −1 −1/2 1/2 1 0 0
0 −1 2 −1 0 0 1 0
−1 0 −1 2 0 0 0 1


E41=⇒


2 −1 0 −1 1 0 0 0
0 3/2 −1 −1/2 1/2 1 0 0
0 −1 2 −1 0 0 1 0
0 −1/2 −1 3/2 1/2 0 0 1


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E32=⇒


2 −1 0 −1 1 0 0 0
0 3/2 −1 −1/2 1/2 1 0 0
0 0 4/3 −4/3 1/3 2/3 1 0
0 −1/2 −1 3/2 1/2 0 0 1


E42=⇒


2 −1 0 −1 1 0 0 0
0 3/2 −1 −1/2 1/2 1 0 0
0 0 4/3 −4/3 1/3 2/3 1 0
0 0 −4/3 4/3 2/3 1/3 0 1


E43=⇒


2 −1 0 −1 1 0 0 0
0 3/2 −1 −1/2 1/2 1 0 0
0 0 4/3 −4/3 1/3 2/3 1 0
0 0 0 0 1 1 1 1

 .

Since we can not find a full set of nonzero pivots, B is not invertible.

Alternatively, we can prove by contradiction that it has no inverse. Suppose
B−1 exists. Let a = [1 1 1 1] . We have

a
(
BB−1

)
= aI = a

(aB)B−1 = 0B−1 = 0

where 0 is the 1× 4 zero vector. Since the associative law is violated, we get
a contradiction. Therefore, B−1 does not exist.

3. (a) True.
B = IB = (A−1A)B = A−1(AB) = A−1I = A−1 ⇒ B = A−1.

(b) False.
Consider

A =

[
1 0
0 1

]
and B =

[
−1 0
0 −1

]
.

Both matrices are invertible. But

A + B =

[
0 0
0 0

]
which is not invertible.

(c) True.
This is equivalent to showing that A is symmetric if A−1 is symmetric. Sup-
pose A−1 is symmetric. We have

A−1 = (A−1)T

⇒I = AA−1 = A(A−1)T

⇒AT = IAT = A(A−1)TAT

= A(AA−1)T = AIT = AI = A

which shows that A is symmetric.

4



4. (a)

E21A =

 1 0 0
−1 1 0
0 0 1

 1 2 1
1 1 2
2 5 6

 =

 1 2 1
0 −1 1
2 5 6

 .

E31E21A =

 1 0 0
0 1 0
−2 0 1

 1 0 0
−1 1 0
0 0 1

 1 2 1
1 1 2
2 5 6

 =

 1 2 1
0 −1 1
0 1 4

 .

U = E32E31E21A =

 1 0 0
0 1 0
0 1 1

 1 0 0
0 1 0
−2 0 1

 1 0 0
−1 1 0
0 0 1

 1 2 1
1 1 2
2 5 6


=

 1 2 1
0 −1 1
0 0 5

 .

Thus we have

L = E−121 E
−1
31 E

−1
32 =

 1 0 0
1 1 0
2 −1 1

 , D =

 1 0 0
0 −1 0
0 0 5

 , U =

 1 2 1
0 1 −1
0 0 1

 .

(b) As we did in part (a) of Problem 2, we can find that

L = E−121 E
−1
32 E

−1
43 =


1 0 0 0
−1/2 1 0 0

0 −2/3 1 0
0 0 −3/4 1

 , D =


2 0 0 0
0 3/2 0 0
0 0 4/3 0
0 0 0 5/4



U =


1 −1/2 0 0
0 1 −2/3 0
0 0 1 −3/4
0 0 0 1

 .

5. (a) Observe that d1, d2, d3 are pivots. In order to have a full set of pivots, we
should have d1d2d3 6= 0.

(b) We first solve Lc = y:

Lc =

 1 0 0
1 1 0
1 0 1

 c1
c2
c3

 =

 2
0
2

⇒
 1 0 0

0 1 0
0 0 1

 c1
c2
c3

 =

 2
−2
0

 = c.
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Then we solve Ux = c:

equation 3: 1 · w = 0 gives w = 0

equation 2: 1 · v + 0 = −2 gives v = −2

equation 1: 2 · u + 4 · (−2) + 0 = 2 gives u = 5.

We have (u, v, w) = (5,−2, 0).

6. (a) By (i) both L−11 and U−12 exist. We can have

L1D1U 1 = L2D2U 2

=⇒D1U 1 = L−11 L2D2U 2

=⇒D1U 1U
−1
2 = L−11 L2D2.

By (i) and (ii) we have that L−11 L2 a lower triangular matrix with unit diago-
nal. Also by (iii) L−11 L2D2 is a lower triangular matrix. Similarly, D1U 1U

−1
2

is upper triangular.

(b) Observing the left hand side, we have U 1U
−1
2 is an upper triangular matrix

with unit diagonal; i.e. (U 1U
−1
2 )ii = 1, for all i. Now we consider the diagonal

terms of D1U 1U
−1
2 . We find that (D1U 1U

−1
2 )ii =

∑
j(D1)ij(U 1U

−1
2 )ji =

(D1)ii(U 1U
−1
2 )ii, since (D1)ij = 0, ∀i 6= j. From the above we can deduce

that (D1U 1U
−1
2 )ii = (D1)ii. Similarly, (L−11 L2D2)ii = (D2)ii. We can then

obtain the fact that (D1)ii = (D2)ii, for all i. Therefore, D1 = D2.

Now comes the off-diagonals. From part (a) we have an lower triangular
matrix equal to an upper triangular matrix. The only possibility is that
D1U 1U

−1
2 = L−11 L2D2 is a diagonal matrix, which means both D1U 1U

−1
2

and L−11 L2D2 only have non-zero values on the main diagonal. From the
previous paragraph we have learned that the values on the main diagonal of
the above two matrices are the same as those of D1 and D2. Thus we have
D1 = D1U 1U

−1
2 = D2 = L−11 L2D2. Since D1, D2 are invertible, we can

then have U 1U
−1
2 = L−11 L2 = I, which gives L1 = L2 and U 1 = U 2, because

of the fact that the inverses are unique.
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7. (a) We can have

A + AT = B + BT + C + CT = B + B + C −C = 2B

⇒2B =

 1 2 3
4 5 6
7 8 9

+

 1 4 7
2 5 8
3 6 9

 =

 2 6 10
6 10 14
10 14 18


⇒B =

 1 3 5
3 5 7
5 7 9


⇒C = A−B =

 0 −1 −2
1 0 −1
2 1 0

 .

(b) We can generalize the method in part (a) to obtain B = (A + AT )/2 and
C = (A−AT )/2.

8. (a) We first perform row exchange to obtain

PA =

 0 1 0
1 0 0
0 0 1

 0 1 1
1 0 1
2 3 6

 =

 1 0 1
0 1 1
2 3 6

 = A′.

Then elimination gives

E32E31A
′ =

 1 0 0
0 1 0
0 −3 1

 1 0 0
0 1 0
−2 0 1

 1 0 1
0 1 1
2 3 6

 =

 1 0 1
0 1 1
0 0 1

 = U .

Therefore, we can obtain PA = LU where

P =

 0 1 0
1 0 0
0 0 1

 , L = E−131 E
−1
32 =

 1 0 0
0 1 0
2 3 1

 , U =

 1 0 1
0 1 1
0 0 1

 .

(b) We first perform elimination to obtain

E31E32A =

 1 0 0
0 1 0
−3 0 1

 1 0 0
0 1 0
0 −2 1

 0 1 1
1 0 1
2 3 6

 =

 0 1 1
1 0 1
0 0 1

 = A′.

Then we perform row exchange to obtain

P T
1A

′ =

 0 1 0
1 0 0
0 0 1

 0 1 1
1 0 1
0 0 1

 =

 1 0 1
0 1 1
0 0 1

 = U .
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Therefore, we can obtain A = LP 1U where

P 1 =

 0 1 0
1 0 0
0 0 1

 , L = E−132 E
−1
31 =

 1 0 0
0 1 0
3 2 1

 , U =

 1 0 1
0 1 1
0 0 1

 .
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