
EE 2030 Linear Algebra Spring 2012

Solution to Homework Assignment No. 3

1. Assume both systems have solutions. We can have

Ax = b

⇒ xTAT = bT

⇒ xTATy = bTy

⇒ xT0 = bTy

⇒ 0 = yTb

which contradicts yTb 6= 0.

2. (a) Let

A =

[

1 1 2
1 2 3

]

and the plane spanned by the vectors (1, 1, 2) and (1, 2, 3) is

V = {v : v = a1(1, 1, 2) + a2(1, 2, 3), ∀a1, a2 ∈ R} = C(AT ).

The orthogonal complement of V is hence the nullspace of A. The RRE form
of A can be given by

RA =

[

1 0 1
0 1 1

]

.

We can therefore find a basis for N (A) as (−1,−1, 1). As a result, we can
have

V ⊥ = N (A) = {w : w = a3(−1,−1, 1), ∀a3 ∈ R} .

(b) It is equivalent to finding a homogeneous equation whose solution space is
V . Let B = [−1 − 1 1] and then the homogeneous equation Bx = 0 where
x = [x1 x2 x3]

T gives −x1 − x2 + x3 = 0. From (a), we have V ⊥ = N (A) =
C(BT ). Therefore, the solution space of Bx = 0 is

N (B) = C(BT )⊥ = N (A)⊥ = C(AT ) = V.

3. (a) The projection matrix P onto the column space of A can be obtained as

P = A(ATA)−1AT

=





1 1
2 −1
−2 4









[

1 2 −2
1 −1 4

]





1 1
2 −1
−2 4









−1
[

1 2 −2
1 −1 4

]

=
1

9





5 4 2
4 5 −2
2 −2 8



 .
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(b) From the projection matrix P derived in (a), we can have

xc = Px =
1

9





5 4 2
4 5 −2
2 −2 8









1
2
7



 =





3
0
6



 .

And hence

xln = x− xc =





1
2
7



−





3
0
6



 =





−2
2
1



 .

4. (a) Let

A1 =









1 −1
1 0
1 1
1 2









, x1 =

[

C1

D1

]

, b =









2
0
−3
−5









.

The best least squares straight line fit can be obtained by solving AT

1
A1x1 =

AT

1
b. Hence we can have

[

1 1 1 1
−1 0 1 2

]









1 −1
1 0
1 1
1 2









[

C1

D1

]

=

[

1 1 1 1
−1 0 1 2

]









2
0
−3
−5









=⇒
[

4 2
2 6

] [

C1

D1

]

=

[

−6
−15

]

=⇒ C1 =
−3

10
, D1 =

−12

5
.

As a result, the best least squares straight line fit is

b =
−3

10
− 12

5
t.

(b) Let

A2 =









1 −1 1
1 0 0
1 1 1
1 2 4









, x2 =





C2

D2

E2



 , b =









2
0
−3
−5









.

The best least squares parabola fit can be obtained by solving AT

2
A2x2 =

2



AT

2
b. Then we can have





1 1 1 1
−1 0 1 2
1 0 1 4













1 −1 1
1 0 0
1 1 1
1 2 4













C2

D2

E2



 =





1 1 1 1
−1 0 1 2
1 0 1 4













2
0
−3
−5









⇒





4 2 6
2 6 8
6 8 18









C2

D2

E2



 =





−6
−15
−21





⇒ C2 =
−3

10
, D2 =

−12

5
, E2 = 0.

As a result, the best least squares parabola fit is

b =
−3

10
− 12

5
t

the same as the best least squares straight line fit.

5. (a) We can have

QTQ =
(

I − 2uuT
)T (

I − 2uuT
)

=
(

I − 2uuT
) (

I − 2uuT
)

= I − 2uuT − 2uuT + 4uuTuuT

= I − 4uuT + 4uuT

= I

where the fourth equality follows from the fact that u is an unit vector and
uTu = 1. Therefore, Q is an orthogonal matrix.

(b) Since QT =
(

I − 2uuT
)T

= IT − 2(uuT )T = I − 2uuT = Q, we can have

Q2 = QQ = QTQ = I.

(c) By the definition of Q, we can have

Q
1
= I − 2u1u

T

1
=

[

1 0
0 1

]

− 2

[

0
1

]

[

0 1
]

=

[

1 0
0 −1

]

Q
2
= I − 2u2u

T

2
=





1 0 0
0 1 0
0 0 1



− 2





0√
2/2√
2/2





[

0
√
2/2

√
2/2

]

=





1 0 0
0 0 −1
0 −1 0



 .

Since

QT

1
Q

1
=

[

1 0
0 −1

] [

1 0
0 −1

]

=

[

1 0
0 1

]

QT

2
Q

2
=





1 0 0
0 0 −1
0 −1 0









1 0 0
0 0 −1
0 −1 0



 =





1 0 0
0 1 0
0 0 1





Q
1
and Q

2
are orthogonal matrices.
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6. (a) Let A = [a1 a2] where

a1 =





1
2
2



 , a2 =





1
3
1



 .

By applying the Gram-Schmit process, we can have:

(i) A1 = a1 =





1
2
2



 , ‖A1‖2 = AT

1
A1 = 9

=⇒ q
1
=

A1

‖A1‖
=

1

3





1
2
2



 .

(ii) A2 = a2 −
(

qT

1
a2

)

q
1

=





1
3
1



−





1

3

[

1 2 2
]





1
3
1









1

3





1
2
2



 =





0
1
−1





‖A2‖2 = AT

2
A2 = 2 =⇒ q

2
=

A2

‖A2‖
=

1√
2





0
1
−1



 .

Therefore, {q
1
, q

2
} is an orthonormal basis for the column space of A.

(b) From (a), we can express A as

A =
[

q
1

q
2

]

[

qT

1
a1 qT

1
a2

0 qT

2
a2

]

=





1/3 0

2/3 1/
√
2

2/3 −1/
√
2





[

3 3

0
√
2

]

.

Hence we can have

Q =





1/3 0

2/3 1/
√
2

2/3 −1/
√
2



 , R =

[

3 3

0
√
2

]

.
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(c) The projection matrix P onto the column space of A can be derived as

P = A
(

ATA
)−1

AT

= QR
(

RTQTQR
)−1

RTQT

= QR
(

RTR
)−1

RTQT

= QRR−1
(

RT
)−1

RTQT

= QQT

=





1/3 0

2/3 1/
√
2

2/3 −1/
√
2





[

1/3 2/3 2/3

0 1/
√
2 −1/

√
2

]

=
1

18





2 4 4
4 17 −1
4 −1 17



 .

Therefore, the projection of b onto the column space of A is

Pb =
1

18





2 4 4
4 17 −1
4 −1 17









1
2
8



 =
1

3





7
5
23



 .

(d) The least squares solution x̂ to Ax = c can be obtained by solving ATAx̂ =
ATc. Hence we can have

[

1 2 2
1 3 1

]





1 1
2 3
2 1



 x̂ =

[

1 2 2
1 3 1

]





1
1
1





=⇒
[

9 9
9 11

]

x̂ =

[

5
5

]

=⇒ x̂ =

[

5/9
0

]

.

7. (a) Let f1(x) = 1, f2(x) = x, f3(x) = x2. By applying the Gram-Schmidt process,
we can have:

(i) F1(x) = f1(x) = 1, ‖F1(x)‖2 = 〈F1(x), F1(x)〉 =
∫

2

−2

1 · 1 dx = 4

=⇒ q1(x) =
F1(x)

‖F1(x)‖
=

1

2
.

(ii) F2(x) = f2(x)− 〈q1(x), f2(x)〉q1(x) = x−
(
∫

2

−2

1

2
xdx

)

1

2
= x

‖F2(x)‖2 = 〈F2(x), F2(x)〉 =
∫

2

−2

x · xdx =
16

3

=⇒ q2(x) =
F2(x)

‖F2(x)‖
=

√
3

4
x.
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(iii) F3(x) = f3(x)− 〈q1(x), f3(x)〉q1(x)− 〈q2(x), f3(x)〉q2(x)

= x2 −
(
∫

2

−2

1

2
x2dx

)

1

2
−
(

∫

2

−2

√
3

4
x · x2dx

) √
3

4
x = x2 − 4

3

‖F3(x)‖2 = 〈F3(x), F3(x)〉 =
∫

2

−2

(

x2 − 4

3

)(

x2 − 4

3

)

dx =
256

45

=⇒ q3(x) =
F3(x)

‖F3(x)‖
=

3
√
5

16
x2 −

√
5

4
.

Therefore, {q1(x), q2(x), q3(x)} forms an orthonormal basis for the subspace
spanned by 1, x, and x2.

(b) Since

〈x2 + 2x, q1(x)〉 =
8

3

〈x2 + 2x, q2(x)〉 =
8
√
3

3

〈x2 + 2x, q3(x)〉 =
16
√
5

15

we can express x2 + 2x as

x2 + 2x

= 〈x2 + 2x, q1(x)〉q1(x) + 〈x2 + 2x, q2(x)〉q2(x) + 〈x2 + 2x, q3(x)〉q3(x)

=
8

3
· 1
2
+

8
√
3

3
·
√
3

4
x+

16
√
5

15
·
(

3
√
5

16
x2 −

√
5

4

)

.

8. (a) Let

f1(t) =
cos t

√

∫

π

−π
cos2 tdt

=
cos t√

π
, f2(t) =

sin t
√

∫

π

−π
sin2 tdt

=
sin t√
π
.

Then f1(t), f2(t) are orthonormal functions. The projection of f(t) = sin 2t
onto the subspace spanned by f1(t) and f2(t) is given by

〈f1(t), f(t)〉f1(t) + 〈f2(t), f(t)〉f2(t)

where

〈f1(t), f(t)〉 =
∫

π

−π

cos t√
π

· sin 2tdt = 0

〈f2(t), f(t)〉 =
∫

π

−π

sin t√
π

· sin 2tdt = 0.

Therefore, the closest function a cos t + b sin t to sin 2t is

0 · cos t√
π

+ 0 · sin t√
π

= 0.
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(b) Let

g1(t) =
1

√

∫

π

−π
12dt

=
1√
2π

, g2(t) =
t

√

∫

π

−π
t2dt

=

√

3

2π3
t.

Then g1(t), g2(t) are orthonormal functions. The projection of f(t) = sin 2t
onto the subspace spanned by g1(t) and g2(t) is given by

〈g1(t), f(t)〉g1(t) + 〈g2(t), f(t)〉g2(t)

where

〈g1(t), f(t)〉 =
∫

π

−π

1√
2π

· sin 2tdt = 0

〈g2(t), f(t)〉 =
∫

π

−π

√

3

2π3
t · sin 2tdt = −

√

3

2π
.

Therefore, the closest function c+ dt to sin 2t is

0 · 1√
2
+

(

−
√

3

2π

)

·
√

3

2π3
t = − 3

2π2
t.
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