EE 2030 Linear Algebra Spring 2012

Solution to Homework Assignment No. 3

1. Assume both systems have solutions. We can have

Ax = b
= a'AT = b’
= zTATy = by
= 0 = bly
= 0 = y'b

which contradicts y?b # 0.

2. (a)

(b)

3. (a)

Let

112
A:[123}

and the plane spanned by the vectors (1,1,2) and (1,2,3) is
V={v:v=a(1,1,2) +ay(1,2,3),Va;,a, € R} = C(AT).

The orthogonal complement of V' is hence the nullspace of A. The RRE form
of A can be given by

101
RA_[O 1 1]'

We can therefore find a basis for N(A) as (—1,—1,1). As a result, we can
have

Vit = N(A) ={w:w=as(—1,-1,1),Yas € R}.

It is equivalent to finding a homogeneous equation whose solution space is
V. Let B =[-1 —1 1] and then the homogeneous equation Bz = 0 where
x = |11 zo x3)7 gives —x1 — 13 + 23 = 0. From (a), we have V1 = N(A) =
C(B"). Therefore, the solution space of Bx = 0 is

N(B)=C(BHY* =N(A)*=cA") =V.

The projection matrix P onto the column space of A can be obtained as

P = AATA)'AT

Lo 1 2 -2 Lo 1 2 -2
- 2 -l 1 -1 4 2 -l 1 -1 4
2 4 2 4
NERE:
2 —2 8



4.

(b) From the projection matrix P derived in (a), we can have

1 5 4 2 1 3
x.= Px = 9 4 5 =2 21 =10
2 -2 8 7 6
And hence
1 3 -2
Tp=T—x.=|2|—-|0]|=
7 6 1
(a) Let
1 -1 2
|1 0 |Gy - 0
Al - 1 1 9 T = |: Dl :| ) b _3
1 2 -5

The best least squares straight line fit can be obtained by solving AT A2, =
ATb. Hence we can have

1 -1 2

1 11 1]t o0 |[ce] [1 111]]o0
{—1012} 11 [Dl}_{—1012} -3
1 2 -5

=[] -[5]

— () 10 1 5

As a result, the best least squares straight line fit is

-3 12

10 57

(b) Let

1 -1 1 2

Cs
1 0 0 0
A=y | | B D] b= g
1 2 4 E -5

The best least squares parabola fit can be obtained by solving A2 Az, =



AZb. Then we can have

1 111 1 _01 (1) C, 1 111 (2)
-1 0 1 2 1 1 1 Dy | = -101 2 _3
1 01 4 1 9 4 Es 1 01 4 5
4 2 6 Cy —6
= 2 6 8 D2 = —15
6 8 18 Es —21
-3 —12
=Cy=—, Dy=— E;=0.
2 10 ) 2 5 ) 2
As a result, the best least squares parabola fit is
=3 12
10 5
the same as the best least squares straight line fit.
(a) We can have
Q'Q = ( — 2uu )T (I — 2uuT)
= (I — 2uu ) (I — 2uuT)
_ T

I —2uu” — 2uu’ + duu"uu
= I —4uu” + duu”
I

where the fourth equality follows from the fact that w is an unit vector and

ulu = 1. Therefore, Q is an orthogonal matrix.

(b) Since Q" = (I — 2uuT)T =I" —2uu”)’ = I — 2uu” = Q, we can have
RQ°=QQ=Q"Q=1
(c) By the definition of @, we can have

st~ [ 0]+t 1[4

100 0
Q,=I-2uu = |0 10 |—-2|+v2/2|[0 v2/2 vV2/2]
0 0 1 V2/2
(1 0 0 ]
= [0 0 -1
|0 -1 0 |
Since
r~ |10 1 o] J[10
ata. = [, Y10 A0 Y]
1 0 0 1 0 0 100
Qr'Q, = |0 0 -1 0 0 —-1]|=1]01o0
0 -1 0 0 -1 0 00 1

Q, and @, are orthogonal matrices.

3



6.

(a) Let A = [ay a3] where

1 1
a; = 2 s as = 3
2 1

By applying the Gram-Schmit process, we can have:

1
(1) Al =a; = 2 s ||141||2 = A?Al =9
2
et 1]
q——
A |
(i) Ay =ay — (q,iraz) q;
1 1 1 0
1 1
:3—5[122}3 12 = !
1 1 2 —1
0
A, 1
Azl = A5 A, =2 = qo=r=—Fx| 1
’ *T Al V2|

Therefore, {q,,q,} is an orthonormal basis for the column space of A.

(b) From (a), we can express A as

A=la qz]{qloa1 Zérii]

/3 0 5 3
= 1 2/3 1/V2 .

2/3 —1/V2 {0 ﬁ}

Hence we can have
/3 0

Q= 2/31/\/§,R:33.
2/3 —1/v2 {0 \/5}



(¢) The projection matrix P onto the column space of A can be derived as
P = A(ATA)' AT
— QR(R'Q"QR)"'R'Q"
— QR(R'R)'R"Q"
— QRR—I (RT)_l RTQT

= QQ"
/3 0 13 2/3  2/3
- o e [0 3
1 2 4 4
= e 4 17 -1
4 —1 17

Therefore, the projection of b onto the column space of A is

1 2 4 4 1 1 7
Pb = 8 4 17 -1 2 | = 3 o
4 -1 17 8 23

(d) The least squares solution & to Az = ¢ can be obtained by solving AT Az =
A”c. Hence we can have

1 2} - @_{122} |
1 3 1 2 1 1 3 1 1
L[99, 5
9 11T |5
:>:i::[569}

(a) Let fi(z) =1, fo(x) = z, f3(z) = 2. By applying the Gram-Schmidt process,
we can have:

2

(i) Fiz) = file) =1, HFl(SC)H2=<F1(w)7F1(w)>=/_21~1d56=4
Fl(ZL') 1

= 0O R@

(i) Fo(z) = falx) = (qu(2), fa(2)) () = 2 — (/2 1:1761517) % =z

2

IR@IF = (Fafo), Fae)) = [ o-ada =3
Fy(x) V3

- Q2(SL’) = m = TSL’



(b)

— ¢3(x) =

Therefore, {q:1(z), ¢2(x), ¢g3(x)} forms an orthonormal basis for the subspace
spanned by 1, z, and 2.

Since
(@ + 20, 01(2)) =
(4 2, o)) = 2L
(o 4 2 gyl = 10

we can express 2% + 2x as
2%+ 2¢
= (@® 4+ 2z, q1(2))qu () + (2% + 22, @2 () ) g2 () + (2* + 27, g3(2) ) g3()
8 1 8/3 V3 16v5 (3V5 , 5
s at— " —F—o+—— | —F2——F .
3 2 3 4 15 16 4
Let
cost _ cost sint B sint

- ) f2 (t) = - .
ST cos? tdt VT [T _sin® tdt VT

fi(t) =

Then fi(t), fo(t) are orthonormal functions. The projection of f(t) = sin2t
onto the subspace spanned by fi(t) and fy(t) is given by

(f1(8), fF() f1(t) + (f2(1), f(2)) f2(D)

where

(fr(1), f(1)) = /ﬂ St Gn2tdt — 0

e AT
s : t
(f2(1), f(2)) = B % - sin 2tdt = 0.
Therefore, the closest function acost 4 bsint to sin 2t is
cost sint
0-—+0-—==0
e VT



(b) Let
1 1

(t) = — e ()= e =\ 5t
g1 - fjﬂ 2dt - 27'('7 g2 - fi:r 24t - 273 .

Then ¢,(t), g2(t) are orthonormal functions. The projection of f(t) = sin2t
onto the subspace spanned by ¢1(¢) and g¢5(t) is given by

(91(1), F(1))91(2) + {g2(t), [ (1)) 92(t)

where

™

-sin 2tdt = 0

_W\/_
/ \/7 t - sin 2tdt = \/2?

Therefore, the closest function ¢ + dt to sin 2t is

NN AW EE
s o3 o2

{9:(1), F(2)) =

=)
Sl
(]



