
EE 2030 Linear Algebra Spring 2013

Solution to Homework Assignment No. 1

1. (a) We can perform Gaussian elimination as follows:





1 2 3 3
2 3 4 4
3 5 8 9



 ⇒





1 2 3 3
0 −1 −2 −2
0 −1 −1 0



 ⇒





1 2 3 3
0 −1 −2 −2
0 0 1 2



 .

Hence the pivots are 1, -1 and 1, and by back substitution the solution is
given by





x

y

z



 =





1
−2
2



 .

(b) Let Ux = c and Lc = b. First, we solve c from Lc = b :





1 0 0
1 1 0
1 1 1









c1
c2
c3



 =





4
5
6





⇒





c1
c2
c3



 =





4
1
1



 .

Next, we solve x from Ux = c :





1 1 1
0 1 1
0 0 1









x

y

z



 =





4
1
1





⇒





x

y

z



 =





3
0
1



 .

2. (a) If A is invertible, we have AA
−1 = I and A

−1
A = I. Since we have

A
2 = AA and (A−1)2 = A

−1
A

−1, we can have

A
2
(

A
−1
)2

= A
(

AA
−1
)

A
−1 = AIA

−1 = AA
−1 = I

(

A
−1
)2

A
2 = A

−1
(

A
−1
A
)

A = A
−1
IA = A

−1
A = I.

Hence A
2 is invertible and (A2)−1 = (A−1)2.
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(b) For m = 1, the statement is obviously true. Assume m = k is true. Then
considering m = k + 1, we can have

A
k+1

(

A
−1
)k+1

= A
k
(

AA
−1
) (

A
−1
)k

= A
k
I
(

A
−1
)k

= A
k
(

A
−1
)k

= I

(

A
−1
)k+1

A
k+1 =

(

A
−1
)k (

A
−1
A
)

A
k =

(

A
−1
)k

IA
k =

(

A
−1
)k

A
k = I.

Hence the statement holds for m = k + 1. By induction, this statement is
true.

3. (a) By applying Gaussian-Jordan elimination, we have








1 −a 0 0 1 0 0 0
0 1 −b 0 0 1 0 0
0 0 1 −c 0 0 1 0
0 0 0 1 0 0 0 1









⇒









1 0 0 0 1 a ab abc

0 1 0 0 0 1 b bc

0 0 1 0 0 0 1 c

0 0 0 1 0 0 0 1









.

Hence

A
−1 =









1 a ab abc

0 1 b bc

0 0 1 c

0 0 0 1









.

(b) From (a), we can guess

A
−1 =













1 a ab abc abcd

0 1 b bc bcd

0 0 1 c cd

0 0 0 1 d

0 0 0 0 1













.

This can be confirmed by multiplying them:

AA
−1 =













1 −a 0 0 0
0 1 −b 0 0
0 0 1 −c 0
0 0 0 1 −d

0 0 0 0 1

























1 a ab abc abcd

0 1 b bc bcd

0 0 1 c cd

0 0 0 1 d

0 0 0 0 1













= I

A
−1
A =













1 a ab abc abcd

0 1 b bc bcd

0 0 1 c cd

0 0 0 1 d

0 0 0 0 1

























1 −a 0 0 0
0 1 −b 0 0
0 0 1 −c 0
0 0 0 1 −d

0 0 0 0 1













= I.

4. (a) False. A counterexample is

[

1 1
1 1

]

. Since it does not have a full set of

pivots, it is not invertible.

(b) True. One can check that

(AB+BA)T = (AB)T+(BA)T = B
T
A

T+A
T
B

T = BA+AB = AB+BA.
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5. (a) Suppose A is singular. By elimination we can assume that there is an invert-
ible matrix M such that a row of MA is zero. Since MAB = MI = M ,
a row of M is zero, which reaches a contradiction because M is invert-
ible. Hence A is nonsingular and thus invertible. We can therefore obtain
B = (A−1

A)B = A
−1(AB) = A

−1
I = A

−1.

(b) Consider A
T
C

T = I
T = I. From (a), we have that A

T is invertible and
(AT )−1 = C

T . Since (AT )−1 = (A−1)T = C
T , we can obtain A

−1 = C.

6. (a) Performing elimination, we can have

A =





1 1 1
1 2 3
1 3 6





E21=⇒





1 1 1
0 1 2
1 3 6





E31=⇒





1 1 1
0 1 2
0 2 5





E32=⇒





1 1 1
0 1 2
0 0 1



 = U .

This procedure can be viewed as

E32E31E21A = U

where

E21 =





1 0 0
−1 1 0
0 0 1



 , E31 =





1 0 0
0 1 0
−1 0 1



 , and E32 =





1 0 0
0 1 0
0 −2 1



 .

Recording the elimination steps and changing the signs of the off-diagonal
elements, we can have

L = E
−1

21 E
−1

31 E
−1

32 =





1 0 0
1 1 0
1 2 1



 .

We also find that U = DL
T where

D =





1 0 0
0 1 0
0 0 1



 .

We can therefore obtain A = LDL
T as





1 1 1
1 2 3
1 3 6



 =





1 0 0
1 1 0
1 2 1









1 0 0
0 1 0
0 0 1









1 1 1
0 1 2
0 0 1



 .

(b) Performing elimination, we can have

A =









1 2 0 0
2 3 1 0
0 1 2 3
0 0 3 4









E21=⇒









1 2 0 0
0 −1 1 0
0 1 2 3
0 0 3 4









E32=⇒









1 2 0 0
0 −1 1 0
0 0 3 3
0 0 3 4









E43=⇒









1 2 0 0
0 −1 1 0
0 0 3 3
0 0 0 1









= U .

This procedure can be viewed as

E43E32E21A = U

3



where

E21 =









1 0 0 0
−2 1 0 0
0 0 1 0
0 0 0 1









, E32 =









1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1









, and E43 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1









.

Recording the elimination steps and changing the signs of the off-diagonal
elements, we can have

L = E
−1

21 E
−1

32 E
−1

43 =









1 0 0 0
2 1 0 0
0 −1 1 0
0 0 1 1









.

We also find that U = DL
T where

D =









1 0 0 0
0 −1 0 0
0 0 3 0
0 0 0 1









.

We can therefore obtain A = LDL
T as









1 2 0 0
2 3 1 0
0 1 2 3
0 0 3 4









=









1 0 0 0
2 1 0 0
0 −1 1 0
0 0 1 1

















1 0 0 0
0 −1 0 0
0 0 3 0
0 0 0 1

















1 2 0 0
0 1 −1 0
0 0 1 1
0 0 0 1









.

7. (a) By (i), L−1

1 and U
−1

2 both exist. Given A = L1D1U 1 and A = L2D2U 2, we
can have

L2D2U 2 = L1D1U 1

=⇒ L
−1

1 (L2D2U 2)U
−1

2 = L
−1

1 (L1D1U 1)U
−1

2

=⇒ L
−1

1 L2D2 = D1U 1U
−1

2 .

By (i), L−1

1 is lower triangular with unit diagonal. By (ii), L−1

1 L2 is lower tri-
angular with unit diagonal. Therefore, by (iii), L−1

1 L2D2 is lower triangular.
Similarly, D1U 1U

−1

2 is upper triangular.

(b) Let M = L
−1

1 L2D2 = D1U 1U
−1

2 . Then M is both lower and upper trian-
gular, which implies that M is a diagonal matrix.

(1) Since U 1U
−1

2 has a unit diagonal, M = D1U 1U
−1

2 has the same diagonal
as D1. It implies that M = D1. Similarly, we can have M = D2.
Therefore, D1 = D2.

(2) For M = L
−1

1 L2D2 = D2, we have L
−1

1 L2 = I. Since the inverse matrix
is unique, we have L2 = (L−1

1 )−1 = L1.

(3) Similarly, for M = D1U 1U
−1

2 = D1, we have U 1U
−1

2 = I. It then
implies that U 1 = (U−1

2 )−1 = U 2.
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8. (a) First do row exchange as

A =





0 2 2
1 2 2
2 6 7





P 21=⇒





1 2 2
0 2 2
2 6 7



 = PA

and then perform elimination as





1 2 2
0 2 2
2 6 7





E31=⇒





1 2 2
0 2 2
0 2 3





E32=⇒





1 2 2
0 2 2
0 0 1



 = U .

Then we have
E32E31(PA) = U

where

P =





0 1 0
1 0 0
0 0 1



 , E31 =





1 0 0
0 1 0
−2 0 1



 , and E32 =





1 0 0
0 1 0
0 −1 1



 .

We can have

L = E
−1

31 E
−1

32 =





1 0 0
0 1 0
2 1 1



 .

The factorization PA = LU is hence given by





0 1 0
1 0 0
0 0 1









0 2 2
1 2 2
2 6 7



 =





1 0 0
0 1 0
2 1 1









1 2 2
0 2 2
0 0 1



 .

(b) In order to factor A into A = L1P 1U 1, we first perform elimination as

A =





0 2 2
1 2 2
2 6 7





E32=⇒





0 2 2
1 2 2
0 2 3





E31=⇒





0 2 2
1 2 2
0 0 1





and then do row exchange as





0 2 2
1 2 2
0 0 1





P 21=⇒





1 2 2
0 2 2
0 0 1



 = U1.

Therefore,
U1 = P 21E31E32A

where

P 21 =





0 1 0
1 0 0
0 0 1



 , E31 =





1 0 0
0 1 0
−1 0 1



 , and E32 =





1 0 0
0 1 0
0 −2 1



 .
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Multiplying E
−1

32 E
−1

31 P
−1

21 from the left to both sides, we can have

A = E
−1

32 E
−1

31 P
−1

21 U 1 = L1P 1U 1

where

P 1 = P
−1

21 =





0 1 0
1 0 0
0 0 1





and

L1 = E
−1

32 E
−1

31 =





1 0 0
0 1 0
1 2 1



 .

The factorization A = L1P 1U 1 is hence given by





0 2 2
1 2 2
2 6 7



 =





1 0 0
0 1 0
1 2 1









0 1 0
1 0 0
0 0 1









1 2 2
0 2 2
0 0 1



 .
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