
EE 2030 Linear Algebra Spring 2013

Solution to Homework Assignment No. 2

1. (a) No. Let W = {(b1, b2, b3) : b1 = 1}. Suppose (1, b2, b3) , (1, b
′

2
, b′

3
) ∈ W . Since

(1, b2, b3) + (1, b′
2
, b′

3
) = (2, b2 + b′

3
, b3 + b′

3
) /∈ W

W is not a subspace of R3

(b) Yes. Let W = {(b1, b2, b3) : b3 − b2 + 3b1 = 0}. Suppose w1 = (b1, b2, b3),
w2 = (b′

1
, b′

2
, b′

3
) ∈ W . We check the following two conditions:

(i) Consider w1 +w2 = (b1 + b′
1
, b2 + b′

2
, b3 + b′

3
). Since

(b3 + b′
3
)− (b2 + b′

2
) + 3 (b1 + b′

1
) = (b3 − b2 + 3b1) + (b′

3
− b′

2
+ 3b′

1
) = 0

we have w1 +w2 ∈ W .

(ii) Consider cw1 = (cb1, cb2, cb3). Since cb3−cb2+3cb1 = c(b3−b2+3b1) = 0,
we have cw1 ∈ W .

As a result, W is a subspace of R3.

(c) Yes. Let W = {a1 (1, 1, 0) + a2 (2, 0, 1) : a1, a2 ∈ R}. Suppose w1 =
a1 (1, 1, 0) + a2 (2, 0, 1), w2 = a′

1
(1, 1, 0) + a′

2
(2, 0, 1) ∈ W . We check the

following two cases:

(i) Consider w1 +w2. We can have

w1 +w2 = a1 (1, 1, 0) + a2 (2, 0, 1) + a′
1
(1, 1, 0) + a′

2
(2, 0, 1)

= (a1 + a′
1
) (1, 1, 0) + (a2 + a′

2
) (2, 0, 1) ∈ W.

(ii) Consider cw1 where c ∈ R. Then we can obtain

cw1 = c (a1 (1, 1, 0) + a2 (2, 0, 1))

= ca1 (1, 1, 0) + ca2 (2, 0, 1) ∈ W.

Therefore, W is a subspace of R3.

2. (a) True. Suppose w1 = s1 + t1, w2 = s2 + t2 ∈ S + T , where s1, s2 ∈ S and
t1, t2 ∈ T . Consider the following two conditions:

(i) w1 + w2 = (s1 + t1) + (s2 + t2) = (s1 + s2) + (t1 + t2) ∈ S + T since
s1 + s2 ∈ S and t1 + t2 ∈ T .

(ii) cw1 = c (s1 + t1) = cs1 + ct1 ∈ S + T since cs1 ∈ S and ct1 ∈ T .

Therefore, S + T is a subspace of V .

(b) False. Consider S = {(x, 0) : x ∈ R}, T = {(0, y) : y ∈ R} are two subspaces
of R2. Take v = (1, 0) ∈ S, w = (0, 1) ∈ T , and hence v ∈ S ∪T , w ∈ S ∪T .
Since v +w = (1, 1) /∈ S ∪ T , S ∪ T is not a subspace of R2.

1



3. From the figure, we can have















y1 + y4 − y3 = 0
y2 + y5 − y1 = 0
y3 + y6 − y2 = 0
y4 + y5 + y6 = 0

=⇒









1 0 −1 1 0 0
−1 1 0 0 1 0
0 −1 1 0 0 1
0 0 0 1 1 1

























y1
y2
y3
y4
y5
y6

















= 0.

Hence

A =









1 0 −1 1 0 0
−1 1 0 0 1 0
0 −1 1 0 0 1
0 0 0 1 1 1









.

By performing elimination on A, we can obtain

A =









1 0 −1 1 0 0
−1 1 0 0 1 0
0 −1 1 0 0 1
0 0 0 1 1 1









=⇒ R =









1 0 −1 0 −1 −1
0 1 −1 0 0 −1
0 0 0 1 1 1
0 0 0 0 0 0









.

The pivot variables are y1, y2, y4 and the free variables are y3, y5, y6. To have the
special solutions, we let

y3 = 1, y5 = 0, y6 = 0 =⇒ y1 = 1, y2 = 1, y4 = 0

y3 = 0, y5 = 1, y6 = 0 =⇒ y1 = 1, y2 = 0, y4 = −1

y3 = 0, y5 = 0, y6 = 1 =⇒ y1 = 1, y2 = 1, y4 = −1.

Hence, the special solutions are
















1
1
1
0
0
0

















,

















1
0
0
−1
1
0

















,

















1
1
0
−1
0
1

















.

4. By Gaussian elimination, we can have




1 3 3 2 b1
2 6 9 5 b2
−1 −3 3 0 b3



 =⇒





1 3 0 1 3b1 − b2
0 0 1 1

3
−2

3
b1 +

1

3
b2

0 0 0 0 5b1 − 2b2 + b3



 .

Hence the system is solvable if 5b1− 2b2 + b3 = 0. Since the pivot variables are x1,
x3 and the free variables are x2, x4, we can find a particular solution by letting

{

x2 = 0
x4 = 0

=⇒

{

x1 = 3b1 − b2
x3 = −2

3
b1 +

1

3
b2

=⇒ xp=









3b1 − b2
0

−2

3
b1 +

1

3
b2

0









.
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Consider




1 3 0 1 0
0 0 1 1

3
0

0 0 0 0 0



 .

To derive a general solution, we can have

x2 = 1, x4 = 0 =⇒ x1 = −3, x3 = 0
x2 = 0, x4 = 1 =⇒ x1 = −1, x3 = −1

3

=⇒ xn = x2









−3
1
0
0









+ x4









−1
0
−1

3

1









.

As a result, the complete solution can be given as

x = xn + xp = x2









−3
1
0
0









+ x4









−1
0
−1

3

1









+









3b1 − b2
0

−2

3
b1 +

1

3
b2

0









if 5b1 − 2b2 + b3 = 0.

5. (a) Suppose

x1





1
1
2



+ x2





1
2
1



+ x3





3
1
1



 =





0
0
0





=⇒ Ax =





1 1 3
1 2 1
2 1 1









x1

x2

x3



 =





0
0
0





=⇒





1 0 0 0
0 1 0 0
0 0 1 0



 .

Since rank(A) = 3, N (A) = {0}. Hence (1, 1, 2), (1, 2, 1), (3, 1, 1) are linearly
independent.

(b) Since (v1 − v2) + (v2 − v3) + (v3 − v4) + (v4 − v1) = 0, they are linearly
dependent.

(c) Since there are four vectors in R3, they must be linearly dependent.

6. (a) Since the column space and the nullspace both have three components, the
desired matrix is 3 by 3, say A. We can find that dim(N (A)) = 1 6= 2 =
3− 1 = 3− rank(A), which is not possible. Therefore, no such matrix exists.

(b) Consider the 3 by 2 matrix

B =





1 0
0 0
0 1



 .

We have that C(B) contains





1
0
0



,





0
0
1



 and C(BT ) contains (1, 1) = (1, 0) +

(0, 1) and (1, 2) = (1, 0) + 2 · (0, 1).
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(c) We can know that A must be 3 by 4. Since x =









1
0
−1
−1









is the only solution

to Ax =





2
1
2



, the nullspace of A must contain the zero vector only. Hence,

the rank of A should be 4. Yet as the number of rows of A is only 3, the
rank of A cannot be 4. Therefore, A does not exist.

7. (a) Convert A =





1 2 0 1
0 1 1 0
−1 −2 0 −1



 into the RRE form:

A =





1 2 0 1
0 1 1 0
−1 −2 0 −1



 =⇒ R =





1 0 −2 1
0 1 1 0
0 0 0 0



 .

Therefore, a basis for the row space of A can be given by

(1, 0,−2, 1), (0, 1, 1, 0).

The pivot columns are the 1st and 2nd columns of R, and hence a basis for
the column space of A can be given by





1
0
−1



 ,





2
1
−2



 .

Since x1 and x2 are pivot variables and x3 and x4 are free variables, a basis
for the nullspace of A can be given by the special solutions:









2
−1
1
0









,









−1
0
0
1









.

We can have R = EA where

E =





1 −2 0
0 1 0
1 0 1



 .

Since the last row of R is a zero row, a basis for the left nullspace of A can
be given by the last row of E:

(1, 0, 1).

(b) For the matrix

A =





1
0
2





[

1 0 0 3
]
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it is a rank-one matrix with the pivot row (1, 0, 0, 3) and the pivot column
(1, 0, 2)T . Therefore, a basis for the row space of A is (1, 0, 0, 3) and a basis
for the column space of A is





1
0
2



 .

For the nullspace of A, we have

[

1 0 0 3
]









x1

x2

x3

x4









= 0.

Since x1 is a pivot variable and x2, x3 and x4 are free variables, a basis for
the nullspace of A can be given by the special solutions:









0
1
0
0









,









0
0
1
0









,









−3
0
0
1









.

For the left nullspace of A, we have

[

y1 y2 y3
]





1
0
2



 = 0.

Therefore, a basis for the left nullspace of A can be given by

(0, 1, 0), (−2, 0, 1).

8. (a) True. Since a square matrix A has independent columns, it is full rank. That
is to say that A has a full set of pivots. Therefore, A is invertible. Since
A has A

−1 as its inverse matrix, we have (A−1)2 as the inverse matrix for
A

2. This implies that A
2 is also full rank. Therefore, A2 has independent

columns.

(b) True. If the 5 by 5 matrix
[

A b
]

is invertible, there are 5 nonzero pivots and
all the columns are independent. Hence b cannot be a linear combination of
the columns of A. Therefore, Ax = b is not solvable.
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