
EE 2030 Linear Algebra Spring 2013

Solution to Homework Assignment No. 3

1. (a) Since vT0 = 0, ∀v ∈ R3, we have S⊥ = R3.

(b) Let A1 =
[

1 1 1
]

. We can have S = C(AT
1
) and

S⊥ = C(AT
1
)⊥ = N (A1) =







x : x = x2





−1
1
0



+ x3





−1
0
1



 , x2, x3 ∈ R







.

(c) Let A2 =

[

1 1 1
1 1 −1

]

. We can have S = C(AT
2
) and

S⊥ = C(AT
2
)⊥ = N (A2) =







x : x = x2





−1
1
0



 , x2 ∈ R







.

Hence,











−1
1
0











is a basis for S⊥.

2. (a) We can have C(AT )⊥ = N (A). Since the RRE form of A is

RA =

[

1 0 1
0 1 0

]

we can obtain that
{

(−1, 0, 1)T
}

is a basis for the orthogonal complement of
the row space of A.

(b) In class we knew that the projection matrix onto the column space of A is
given by

P = A
(

ATA
)−1

AT (1)

where A is assumed to have full column rank so that
(

ATA
)−1

exists. Un-
fortunately, the matrix

A =

[

1 1 1
1 0 1

]

does not have full column rank, and hence we cannot apply the formula (1)
directly. Yet from RA, we can find that a basis for C(A) can be given by
{[

1
1

]

,

[

1
0

]}

. Let Â =

[

1 1
1 0

]

. Then we can have

PC = Â
(

Â
T
Â
)−1

Â
T
=

[

1 0
0 1

]

= I.
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(c) The projection matrix PR onto the row space of A can be obtained by re-
placing A in (1) with AT . Hence we can have

PR = AT
(

AAT
)−1

A =





1/2 0 1/2
0 1 0
1/2 0 1/2



 .

(d) From (c), we can have

xr = PR xT =





2
2
2





and

xn = x− xr =





−1
0
1



 .

(e) We can have
[

1 1 1 2
1 0 1 3

]

=⇒
[

1 0 1 3
0 1 0 −1

]

.

A particular solution xp to Ax = b can be given by

xp =





3
−1
0



 .

Hence

xr = PR xp =





3/2
−1
3/2



 .

3. (a) We can have














C + D + E = 3
C + 3E = 6
C + 2D + E = 5
C = 0

=⇒ Ax = b

where

A =









1 1 1
1 0 3
1 2 1
1 0 0









, x =





C
D
E



 , b =









3
6
5
0









.

The best least squares fit can be derived by solving ATAx̂ = ATb. Hence
one can obtain

x̂ =





C
D
E



 =





−3/25
73/50
101/50



 .
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(b) We can have


















C = y1
C = y2

...
C = ym

=⇒ Ax = b

where

A =











1
1
...
1











, x = C, b =











y1
y2
...
ym











.

The best least squares fit can be found by solving ATAx̂ = ATb. Hence, we
can obtain

mC = y1 + y2 + · · ·+ ym =⇒ C =
y1 + y2 + · · ·+ ym

m
.

4. (a) Let y , Ax and z , ATy. Since

∂

∂xk

‖Ax‖2 = ∂

∂xk

‖y‖2 = ∂

∂xk

m
∑

i=1

y2i =
m
∑

i=1

2yi
∂yi
∂xk

and

∂yi
∂xk

=
∂

∂xk

n
∑

j=1

Aijxj = Aik = AT
ki

we have

∂

∂xk

‖Ax‖2 = 2

m
∑

i=1

AT
kiyi = 2zk.

Collecting the partial derivatives yields






∂
∂x1

‖Ax‖2
...

∂
∂xn

‖Ax‖2






=







2z1
...

2zn






= 2z = 2ATy = 2ATAx.

(b) Let w , ATb. Then we have

∂

∂xk

(

2bTAx
)

=
∂

∂xk

(

2
m
∑

i=1

biyi

)

= 2
m
∑

i=1

AT
kibi = 2wk.

Collecting the partial derivatives yields






∂
∂x1

(

2bTAx
)

...
∂

∂xn

(

2bTAx
)






=







2w1

...
2wn






= 2w = 2ATb.
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(c) Finally, we can have

∂

∂xk

‖Ax− b‖2 = ∂

∂xk

‖Ax‖2 − ∂

∂xk

(

2bTAx
)

= 2zk − 2wk.

Collecting the partial derivatives yields






∂
∂x1

‖Ax− b‖2
...

∂
∂xn

‖Ax− b‖2






=







2z1 − 2w1

...
2zn − 2wn






= 2(z −w) = 2(ATAx−ATb).

Hence, the partial derivatives of ‖Ax− b‖2 are zero when ATAx = ATb.

5. (a) We have

QTQ =
(

I − 2uuT
)T (

I − 2uuT
)

=
(

I − 2uuT
) (

I − 2uuT
)

= I − 4uuT + 4uuTuuT .

Since u is a unit vector, we have uTu = 1. And hence

QTQ = I − 4uuT + 4uuTuuT = I − 4uuT + 4uuT = I.

As a result, Q is an orthogonal matrix.

(b) We can have

Qu =
(

I − 2uuT
)

u = u− 2uuTu = u− 2u = −u.

(c) We have

Qv =
(

I − 2uuT
)

v = v − 2uuTv.

Since v and u are orthogonal, uTv = 0. Hence

Qv = v − 2uuTv = v.

6. (a) Let A = [ a1 a2 a3 ], where

a1 =





0
0
1



 , a2 =





0
1
1



 , a3 =





1
1
1



 .

Applying the Gram-Schmidt process, we can have

A1 = a1 =





0
0
1



 =⇒ q
1
=

A1

‖A1‖
=





0
0
1





A2 = a2 −
(

qT
1
a2

)

q
1
=





0
1
0



 =⇒ q
2
=

A2

‖A2‖
=





0
1
0





A3 = a3 −
(

qT
1
a3

)

q
1
−
(

qT
2
a3

)

q
2
=





1
0
0



 =⇒ q
3
=

A3

‖A3‖
=





1
0
0



 .

Hence, {q
1
, q

2
, q

3
} forms an orthonormal basis for the column space of A.
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(b) From (a), we can have

A =
[

a1 a2 a3

]

=
[

q
1

q
2

q
3

]





qT
1
a1 qT

1
a2 qT

1
a3

0 qT
2
a2 qT

2
a3

0 0 qT
3
a3





=





0 0 1
0 1 0
1 0 0









1 1 1
0 1 1
0 0 1



 = QR

where

Q =





0 0 1
0 1 0
1 0 0



 , R =





1 1 1
0 1 1
0 0 1



 .

7. (a) Let f1(x) = 1, f2(x) = x, f3(x) = x2. Applying the Gram-Schmidt process,
we can have

F1(x) = f1(x) = 1 =⇒ q1(x) =
F1(x)

‖F1(x)‖
=

√
2

2

F2(x) = f2(x)− 〈q1(x), f2(x)〉 q1(x) = x =⇒ q2(x) =
F2(x)

‖F2(x)‖
=

√
6

2
x

F3(x) = f3(x)− 〈q1(x), f3(x)〉 q1(x)− 〈q2(x), f3(x)〉 q2(x) = x2 − 1

3

=⇒ q3(x) =
F3(x)

‖F3(x)‖
=

3
√
10

4

(

x2 − 1

3

)

.

Hence, {q1(x), q2(x), q3(x)} forms an orthonormal basis for the subspace spanned
by 1, x, and x2.

(b) The best least squares approximation to x3 by C+Dx+Ex2 is the projection
of x3 onto the subspace spanned by 1, x, and x2. In (a), we have already
derived an orthonormal basis for this subspace. Since

〈q1, x3〉 = 0

〈q2, x3〉 =
√
6

5
〈q3, x3〉 = 0

the best least squares approximation to x3 by C +Dx+ Ex2 is

〈q1, x3〉q1 + 〈q2, x3〉q2 + 〈q3, x3〉q3 =
3

5
x.
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