
EE 2030 Linear Algebra Spring 2013

Solution to Homework Assignment No. 4

1. (a) By using row operations, we can obtain
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= 1 · −1 · −2 · 10 = 20

and
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0 0 −1 2
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0 0 −1 2
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0 0 −1 2
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0 0 0 1
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= 1 · 1 · 1 · 1 = 1.

(b) We have |2A| = 24 · |A| = 320 and |ATB| = |AT ||B| = |A||B| = 20.

2. (a) True. Since Q is an orthogonal matrix, we have QTQ = I. We can then
obtain 1 = |I| = |QTQ| = |QT ||Q| = |Q||Q| = |Q|2. Therefore, detQ is
equal to 1 or −1.

(b) True. Since A is not invertible, we have |A| = 0. Then we can obtain
|AB| = |A| |B| = 0 · |B| = 0. Hence AB is not invertible.

(c) False. LetA =

[

1 0
0 0
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andB =
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0 0
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. We have |A−B| =
∣
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−1. However, |A| − |B| = 0 − 0 = 0. Hence |A−B| 6= |A| − |B|, which
gives a counterexample.



(d) False. Let A =

[

0 1
−1 0

]

. We have AT =

[

0 −1
1 0

]

= −A. It is skew-

symmetric. However, detA = 1, which gives a counterexample.

3. Let Fn = |An|, where An is an n by n matrix. For n ≥ 3, we have

Fn =
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Applying the cofactor formula to the first row, we can have

Fn = 1 · (−1)1+1|An−1|+ (−1) · (−1)1+2
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= Fn−1 + 1 · (−1)1+1|An−2| (apply the cofactor formula to the first column)

= Fn−1 + Fn−2.

4. (a) Let Sn = |An|, where An is an n by n matrix. For n ≥ 3, we have
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Applying the cofactor formula to the first row, we can have

Sn = 3 · (−1)1+1|An−1|+ 1 · (−1)1+2
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= 3Sn−1 − 1 · (−1)1+1|An−2| (apply the cofactor formula to the first column)

= 3Sn−1 − Sn−2.

Therefore, we can obtain a = 3 and b = −1.

(b) We have

S1 = 3

S2 = 8

S3 = 3S2 − S1 = 21

S4 = 3S3 − S2 = 55

S5 = 3S4 − S3 = 144.
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5. (a) Consider the last three rows




0 0 0 x x
0 0 0 x x
0 0 0 x x



 .

The rank of this submatrix is at most 2. Therefore, the rows are dependent.

(b) The big formula states that the determinant of A is the sum of 5! simple
determinants, times 1 or −1, and every simple determinant chooses one entry
from each row and column. From the last three rows, we can see that if
some simple determinant of A avoids all the zero entries in A, then it cannot
choose one entry from each column. Thus every simple determinant of A
must choose at least one zero entry, and hence all the terms are zero in the
big formula for detA.

6. (a) For the first system, we have
[

2 5
1 4

] [
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x2

]

=
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1
2

]

.

Using Cramer’s rule, we can obtain
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(b) For the second system, we have
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0 1 2
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Using Cramer’s rule, we can obtain
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7. (a) We have

C11 =
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∣
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∣
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Therefore, the cofactor matrix is given by

C =





4 −2 0
−2 3 −1
0 −1 1



 .
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(b) Since (CT/ detA) = A−1, we know that ACT = (detA)AA−1 = (detA)I.
We have

ACT =





2 0 0
0 2 0
0 0 2



 = (detA)I.

Therefore, it can be obtained that detA = 2.

8. (a) Since the Hadamard matrix H4 has orthogonal rows, the box is a hypercube
and the absolute value of the volume is the multiplication of lengths of the row
vectors. We know that every row vector has equal length

√
12 + 12 + 12 + 12 =

2. Therefore,
|detH4| = 2 · 2 · 2 · 2 = 16.

(b) For H4, from (a) we can have H4H
T

4 = 4I4, where In is the n by n identity
matrix. We now have

H8H
T

8 =

[

H4 H4

H4 −H4

] [

HT

4 HT

4

HT

4 −HT

4

]

=

[

2HHT

4 H4H
T

4 −H4H
T

4

H4H
T

4 −H4H
T

4 2HHT

4

]

=

[

8I4 O

O 8I4

]

= 8I8.

Therefore, the rows of H8 are mutually orthogonal. It is still a hypercube
and the absolute value of the volume is the multiplication of lengths of the
row vectors. Every row vector has equal length

√
8. Therefore,

|detH8| =
(√

8
)8

= 4096.
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