
EE 2030 Linear Algebra Spring 2011

Solution to Midterm Examination No. 2

1. (a) Consider the 3× 2 matrix

A =

 1 0
0 0
0 1

 .

Then C(A) contains

1
0
0

,

0
0
1

 and C(AT ) contains (1, 1), (1, 2).

(b) Since the column space and nullspace both have three components, the desired
matrix is 3 by 3, say B. We can find dim(N (B)) = 1 6= 2 = 3 − 1 =
3− rank(B), which is not possible. Therefore, no such matrix exists.

(c) Suppose the desired matrix exists. By the required property, column rank =
dim(R4) = 4 6= 3 = dim(R3) = row rank, which is not possible. Therefore,
no such matrix exists.

2. (a) Transform A into the RRE form:

A =

 1 3 1 2
2 6 3 5
−1 −3 1 0

 =⇒ R =

1 3 0 1
0 0 1 1
0 0 0 0

 .

Therefore, a basis for the row space of A can be given by

(1, 3, 0, 1), (0, 0, 1, 1).

(b) The orthogonal complement of the column space of A is the left nullspace of
A. We can have R = EA where

E =

 3 −1 0
−2 1 0
5 −2 1

 .

Since the last row of R is a zero row, a basis for the left nullspace can be
given by the last row of E:

(5,−2, 1).

(c) From R, we know that (1, 2,−1)T , (1, 3, 1)T form a basis for the column space
of A. Therefore, we can obtain

P c =

 1 1
2 3
−1 1



 1 1

2 3
−1 1

T  1 1
2 3
−1 1




−1  1 1
2 3
−1 1

T

=

 1/6 1/3 −1/6
1/3 13/15 1/15
−1/6 1/15 29/30

 .



(d) We can project x onto the column space of A and obtain

xc = P cx =

 1/6 1/3 −1/6
1/3 13/15 1/15
−1/6 1/15 29/30

 5
−1
3

 =

0
1
2

 .

Then we can have

xln = x− xc =

 5
−1
3

−
0

1
2

 =

 5
−2
1

 .

3. (a) Let

A1 =


1
1
1
1

 , x̂1 =
[
C1

]
, and b1 =


2
0
−3
−5

 .

We know the choice of x̂1 which minimizes the squared error can be obtained
by solving

AT
1A1x̂1 = AT

1 b1

which gives
4C1 = −6.

Hence the best least squares horizontal line fit is given by b = C1 = −3/2.

(b) Let

A2 =


1 −1
1 0
1 1
1 2

 , x̂2 =

[
C2

D2

]
, and b2 =


2
0
−3
−5

 .

The least squares solution x̂2 can be obtained by solving

AT
2A2x̂2 = AT

2 b2

or equivalently, [
4 2
2 6

] [
C2

D2

]
=

[
−6
−15

]
.

Therefore, we have [
C2

D2

]
=

[
−3/10
−12/5

]
and the best least squares straight line fit is given by b = C2+D2t = −3/10−
(12/5)t.

(c) Let

A3 =


1 −1 1
1 0 0
1 1 1
1 2 4

 , x̂3 =

 C3

D3

E3

 , and b3 =


2
0
−3
−5

 .

2



The least squares solution x̂3 can again be obtained by solving

AT
3A3x̂3 = AT

3 b3

which is given by  4 2 6
2 6 8
6 8 18

 C3

D3

E3

 =

 −6
−15
−21

 .

Finally, we obtain  C3

D3

E3

 =

 −3/10
−12/5

0


and the best least squares parabola fit is given by b = C3 + D3t + E3t

2 =
−3/10 − (12/5)t. In this case, the best parabola fit is identical to the best
straight line fit.

4. (a) Let f1(x) = 1, f2(x) = x, and f3(x) = x2. By the Gram-Schmidt process, we
can obtain

F1(x) = f1(x) = 1

=⇒ q1(x) =
F1(x)

‖F1‖
=

1√∫ 2

−2
12dx

=
1

2
.

F2(x) = f2(x)− 〈q1, f2〉q1(x) = x−
∫ 2

−2

1

2
xdx · 1

2
= x

=⇒ q2(x) =
F2(x)

‖F2‖
=

x√∫ 2

−2
x2dx

=

√
3

4
x.

F3(x) = f3(x)− 〈q1, f3〉q1(x)− 〈q2, f3〉q2(x)

= x2 −
∫ 2

−2

1

2
x2dx · 1

2
−
∫ 2

−2

√
3

4
x3dx ·

√
3

4
x = x2 − 4

3

=⇒ q3(x) =
F3(x)

‖F3‖
=

x2 − 4/3√∫ 2

−2
(x2 − 4/3)2dx

=
3
√

5

16
x2 −

√
5

4
.

Therefore,

q1(x) =
1

2
, q2(x) =

√
3

4
x, and q3(x) =

3
√

5

16
x2 −

√
5

4

form an orthonormal basis for the subspace spanned by 1, x, and x2.

(b) According to (a), we can write

x2 + 2x =
8

3
q1(x) +

8√
3
q2(x) +

16

3
√

5
q3(x).
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5. (a) Yes, it is true. Since A is not invertible, we have |A| = 0. Then we can have
|AB| = |A| |B| = 0 · |B| = 0. Hence AB is not invertible.

(b) No, it is false. For example, let A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
. Then

we have |A−B| =

∣∣∣∣ 1 0
0 −1

∣∣∣∣ = −1, and |A| − |B| = 0 − 0 = 0. Hence

|A−B| 6= |A| − |B|.
(c) Yes, it is true. For a skew-symmetric matrix satisfies AT = −A, we have∣∣AT

∣∣ = |−A|. Since
∣∣AT

∣∣ = |A| and |−A| = (−1)n |A|, we can obtain
|A| = (−1)n |A|. Therefore, if n is odd, we have |A| = − |A|, which implies
|A| = 0.

6. (a) Let Sn = |An| where An is an n by n matrix. For n ≥ 3, we have

Sn =

∣∣∣∣∣∣∣∣∣∣∣

3 1 0 · · · 0
1
0 An−1
...
0

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 0 0 · · · 0
1 3 1 0 · · · 0
0 1
0 0 An−2
...

...
0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Applying the cofactor formula to the first row, we can have

Sn = 3 · (−1)1+1|An−1|+ 1 · (−1)1+2

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0
0
0 An−2
...
0

∣∣∣∣∣∣∣∣∣∣∣
= 3Sn−1 − 1 · (−1)1+1|An−2| (apply the cofactor formula to the first column)

= 3Sn−1 − Sn−2.

Then we can obtain a = 3 and b = −1.

(b) We have

S1 = 3

S2 = 8

S3 = 3S2 − S1 = 21

S4 = 3S3 − S2 = 55

S5 = 3S4 − S3 = 144.
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7. (a)

|A5| =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
4 4 4 4 4

∣∣∣∣∣∣∣∣∣∣
[add all rows (except the last) to the last row]

= 4

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣
= 4

∣∣∣∣∣∣∣∣∣∣
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣
[subtract the last row from each preceding row]

= 4(−1)(−1)(−1)(−1)(1) [all other terms in the big formula are zero]

= 4.

(b) We have that the (1, 1) entry of A−1
4 is equal to

(A−1
4 )11 =

C11

det(A4)
=

det(A3)

det(A4)
=

∣∣∣∣∣∣
0 1 1
1 0 1
1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

∣∣∣∣∣∣∣∣
= −2

3
.
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