
EE 2030 Linear Algebra Spring 2012

Solution to Midterm Examination No. 1

1. (a) Performing forward elimination, we can have

A =


1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

 M 1=⇒


1 1 1 1
0 1 1 1
0 1 2 2
0 1 2 3

 (subtract row 1)
(subtract row 1)
(subtract row 1)

M 2=⇒


1 1 1 1
0 1 1 1
0 0 1 1
0 0 1 2

 (subtract row 2)
(subtract row 2)

M 3=⇒


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


(subtract row 3)

= U

where

M 1 = E41E31E21 =


1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

 , M 2 = E42E32 =


1 0 0 0
0 1 0 0
0 −1 1 0
0 −1 0 1

 ,

and

M 3 = E43 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

 .

Since M 3M 2M 1A = U , we have

A = M−1
1 M−1

2 M−1
3 U = LU

where

U =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


and

L = M−1
1 M−1

2 M−1
3

=


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1




1 0 0 0
0 1 0 0
0 1 1 0
0 1 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .



(b) From (a), there are 4 nonzero pivots and hence rank(A) = 4. Therefore, A
is invertible. Also from (a),

A = LU =⇒ A−1 = U−1L−1.

Since
M 3M 2M 1A = L−1A = U

we have

L−1 = M 3M 2M 1

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1




1 0 0 0
0 1 0 0
0 −1 1 0
0 −1 0 1




1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

 =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 .

We then use the Gauss-Jordan method to find U−1:
1 1 1 1 1 0 0 0
0 1 1 1 0 1 0 0
0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 1



=⇒


1 1 1 0 1 0 0 −1
0 1 1 0 0 1 0 −1
0 0 1 0 0 0 1 −1
0 0 0 1 0 0 0 1



=⇒


1 1 0 0 1 0 −1 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 0 1 −1
0 0 0 1 0 0 0 1



=⇒


1 0 0 0 1 −1 0 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 0 1 −1
0 0 0 1 0 0 0 1



=⇒ U−1 =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

 .

Finally, we can obtain

A−1 = U−1L−1 =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 .

(c) From (a), we know that rank(A) = 4. Hence dim(C(AT )) = 4.

(d) Since A is invertible, the system is always solvable for all b1, b2, b3, b4 ∈ R.
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(e) Since rank(A) = 4, we have the dimension of N (AT ) is 4− 4 = 0. Therefore,
the only vector in N (AT ) is 0.

2. (a) True. Since

(ABA)T = ATBTAT = (−A)(−B)(−A) = −(ABA)

ABA is also skew-symmetric.

(b) True. Suppose A is m by n. Consider that Ax = b always has at least
one solution for every b ∈ Rm, and we have rank(A) = r = m ≤ n. Then
dim(N (AT )) = m − r = m − m = 0, and the only solution to ATy = 0 is
y = 0.

(c) False. Consider

A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
.

They are both singular matrices in M . Since

A+B =

[
1 0
0 1

]
which is nonsigular, the singular matrices in M do not form a subspace of M .

(d) False. Consider x1 · (2, 1,−1) + x2 · (4, 1, 1) + x3 · (2,−1, 5) = (0, 0, 0). We
have  2 4 2 0

1 1 −1 0
−1 1 5 0


which by elimination can be reduced to 1 2 1 0

0 −1 −2 0
0 0 0 0

 .

Hence there exist nonzero solutions (x1, x2, x3), which implies that (2, 1,−1),
(4, 1, 1), and (2,−1, 5) are not linearly independent. Therefore, they do not
form a basis for R3.

3. (a) Let

A =

[
1 1 0 1
0 1 1 1

]
.

We can have S = N (A). The RRE form of A can be given by

A′ =

[
1 0 −1 0
0 1 1 1

]
.

The free variables are x3 and x4. Letting (x3, x4) = (1, 0), we have (x1, x2) =
(1,−1). Letting (x3, x4) = (0, 1), we have (x1, x2) = (0,−1). As a result, a
basis for S can be given by

(1,−1, 1, 0), (0,−1, 0, 1).
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(b) Let

B =
[
1 1 1 1

]
.

We can have T = N (B). The free variables are x2, x3, and x4. Letting
(x2, x3, x4) = (1, 0, 0), we have x1 = −1. Letting (x2, x3, x4) = (0, 1, 0), we
have x1 = −1. Letting (x2, x3, x4) = (0, 0, 1), we have x1 = −1. As a result,
a basis for T can be given

(−1, 1, 0, 0), (−1, 0, 1, 0), (−1, 0, 0, 1).

(c) Let

C =

[
A
B

]
=

 1 1 0 1
0 1 1 1
1 1 1 1

 .

We can have

S ∩ T

= {(x1, x2, x3, x4) :x1 + x2 + x4 = 0, x2 + x3 + x4 = 0, x1 + x2 + x3 + x4 = 0}
= N (C).

Since the RRE form of C is

C′ =

 1 0 0 0
0 1 0 1
0 0 1 0


the rank of C′ is 3. Hence dim(S ∩ T ) = dim(N (C ′)) = 4− rank(C′) = 1.

(d) Assume u ∈ S + T . By the definition of S + T , we can have u = s+ t where
s ∈ S and t ∈ T . Since we have found a basis for S and T in (a) and (b),
respectively, we can express u as

u = s+ t = a1(1,−1, 1, 0) + a2(0,−1, 0, 1)

+b1(−1, 1, 0, 0) + b2(−1, 0, 1, 0) + b3(−1, 0, 0, 1)

where a1, a2, b1, b2, b3 ∈ R. Since (1,−1, 1, 0) is not a linear combination
of {(−1, 1, 0, 0), (−1, 0, 1, 0), (−1, 0, 0, 1)}, and (0,−1, 0, 1) = −(−1, 1, 0, 0) +
(−1, 0, 0, 1), u can be rewritten as

u = a′1(1,−1, 1, 0) + b′1(−1, 1, 0, 0) + b′2(−1, 0, 1, 0) + b′3(−1, 0, 0, 1)

where a′1, b
′
1, b

′
2, b

′
3 ∈ R. Since (1,−1, 1, 0), (−1, 1, 0, 0), (−1, 0, 1, 0), and

(−1, 0, 0, 1) are linearly independent, they form a basis for S + T . As a
result, the dimension of S + T is 4.

4. (a) Finding the coefficients x1, x2 such that x1 · (1, 1, 2) + x2 · (1, 2, 1) = 0 is
equivalent to finding the solutions of the system1 1

1 2
2 1

[
x1

x2

]
=

00
0

 .
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After elimination we can obtain1 0
0 1
0 0

[
x1

x2

]
=

00
0

 .

And thus the only solution is (x1, x2) = (0, 0), which means that the two
vectors (1, 1, 2) and (1, 2, 1) are linearly independent.

(b) Since 1 · (υ1 − υ2) + 1 · (υ2 − υ3) + 1 · (υ3 − υ1) = 0, we know that υ1 − υ2,
υ2 − υ3, and υ3 − υ1 are linearly dependent for any υ1, υ2, υ3 in R3.

(c) Since there are 4 vectors in R3, they must be linearly dependent.

5. Consider the following augmented matrix and perform elimination: 1 3 3 2 b1
2 6 9 5 b2
−1 −3 3 0 b3


=⇒

 1 3 3 2 b1
0 0 3 1 b2 − 2b1
−1 −3 3 0 b3


=⇒

 1 3 3 2 b1
0 0 3 1 b2 − 2b1
0 0 6 2 b3 + b1


=⇒

 1 3 3 2 b1
0 0 3 1 b2 − 2b1
0 0 0 0 b3 + 5b1 − 2b2


=⇒

 1 3 0 1 3b1 − b2
0 0 3 1 b2 − 2b1
0 0 0 0 b3 + 5b1 − 2b2


=⇒

 1 3 0 1 3b1 − b2
0 0 1 1/3 (1/3) · (b2 − 2b1)
0 0 0 0 b3 + 5b1 − 2b2

 .

From the last row, we have that the system is solvable if b3 + 5b1 − 2b2 = 0, i.e.,

b3 = 2b2 − 5b1.

When the above condition holds, we need to solve 1 3 0 1 3b1 − b2
0 0 1 1/3 (1/3) · (b2 − 2b1)
0 0 0 0 0

 .

The pivot variables are x1 and x3, and we can obtain a particular solution

xp =


3b1 − b2

0
(1/3) · (b2 − 2b1)

0

 .
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Now we turn to find the nullspace solution xn. Note that x2, x4 are free variables.
For (x2, x4) = (1, 0), we have (x1, x3) = (−3, 0). For (x2, x4) = (0, 1), we have
(x1, x3) = (−1,−1/3). Therefore, the nullspace solution can be given by

xn = x2


−3
1
0
0

+ x4


−1
0

−1/3
1


where x2, x4 ∈ R. Finally, the complete solution is

x = xp + xn =


3b1 − b2

0
(1/3) · (b2 − 2b1)

0

+ x2


−3
1
0
0

+ x4


−1
0

−1/3
1


where x2, x4 ∈ R if b3 = 2b2 − 5b1.

6. (a) We can know that A must be 3 by 4. Since x =


1
0
−1
−1

 is the only solution to

Ax =

21
2

, the nullspace of A must contain the zero vector only. Hence, the

rank of A should be 4. Yet as the number of rows of B is only 3, the rank of
A cannot be 4. Therefore, A does not exist.

(b) We can find a desired matrix as follows: 1 0 −2 0
0 1 −3 0
0 0 0 1

 .

It is clear that it is in the RRE form. The pivot variables are x1, x2, and x4,
and the free variable is x3. Taking x3 = 1, we can obtain a special solution
as

(2, 3, 1, 0).

Therefore, the vector


2
3
1
0

 forms a basis for the nullspace of the above matrix.
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