
EE 2030 Linear Algebra Spring 2013

Solution to Final Examination

1. (a) False. Let A =





1 1 1
0 1 1
0 0 2



 . Consider

det(A− λI) = (1− λ)2(2− λ) = 0.

We can then obtain that the eigenvalues of A are 1, 1, and 2. For λ = 1, its
AM is 2. Since

A− 1 · I =





0 1 1
0 0 1
0 0 1





the GM of eigenvalue 1 is 1, which is smaller than its AM. Therefore, A is
not diagonalizable.

(b) Let

B =
1

2

(

A+AT
)

=





−4 −2 2
−2 −10 −2
2 −2 −5





which is a symmetric matrix. Then we can obtain xTAx = xTBx. Hence
xTAx = xTBx < 0 for every nonzero vector x if and only if B is negative
definite, or equivalently,

−B =





4 2 −2
2 10 2
−2 2 5





is positive definite. Since the upper left determinants of −B are 4, 36, 108,
which are all positive, −B is positive definite. As a result, xTAx < 0 for
every nonzero vector x .

(c) True. Since





4 0 0
0 −2 0
0 0 1



 =





0 0 1
1 0 0
0 1 0









−2 0 0
0 1 0
0 0 4









0 0 1
1 0 0
0 1 0





−1





4 0 0
0 −2 0
0 0 1



 is similar to





−2 0 0
0 1 0
0 0 4



.

(d) False. Let p(x) = 1. Since

T (cp(x)) = T (c) = x2 + c

cT (p(x)) = cT (1) = c(x2 + 1) = cx2 + c

we have T (cp(x)) 6= cT (p(x)) as long as c 6= 1. Therefore, T is not linear.
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(e) True. For every b ∈ R
m, we can have

b = p+ e

where p ∈ C(A) and e ∈ N (AT ). We can then have, for all b ∈ R
m,

A+AA+b = A+AA+(p+ e)

= A+AA+p+A+AA+e

= A+(p) +A+A0

= A+p

= A+(p+ e)

= A+b

since AA+ is the projection matrix onto C(A) and A+e = 0. Therefore,
A+AA+ = A+.

2. (a) Consider

det(A− λI) =
−λ −1
1 −λ

= λ2 + 1 = 0.

Hence, the eigenvalues of A are i and −i.

(b) Let λ be an eigenvalue of A and x be the corresponding unit eigenvector.
Since A is real, we can have

Ax = λx

=⇒ Āx̄ = λ̄x̄

=⇒ Ax̄ = λ̄x̄.

Consider x̄TAx. We can then have:

(i) x̄TAx = x̄T (λx) = λx̄Tx = λ‖x‖2 = λ

(ii) x̄TAx = (AT x̄)Tx = (−Ax̄)Tx = (−λ̄x̄)Tx = −λ̄x̄Tx = −λ̄‖x‖2
= −λ̄.

Hence, we can obtain λ = −λ̄, which means that λ is pure imaginary.

(c) We can have

xTAx = (xTAx)T = xTATx = xT (−A)x = −xTAx.

Hence, xTAx = 0 for every real vector x.

3. Let A =

[

0.4 0.2
0.6 0.8

]

. Since the eigenvalues of A are 1, 0.2, and

[

1
3

]

,

[

1
−1

]

are their corresponding eigenvectors, respectively, we can have

A = SΛS−1
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where

S =

[

1 1
3 −1

]

and Λ =

[

1 0
0 0.2

]

.

Hence, we can have

Ak = SΛkS−1 =

[

1 1
3 −1

] [

1k 0
0 0.2k

] [

1/4 1/4
3/4 −1/4

]

=⇒ lim
k→∞

Ak =

[

1 1
3 −1

] [

1 0
0 0

] [

1/4 1/4
3/4 −1/4

]

=

[

1/4 1/4
3/4 3/4

]

.

Therefore,

lim
k→∞

Ak

[

1
0

]

=

[

1/4
3/4

]

lim
k→∞

Ak

[

0
1

]

=

[

1/4
3/4

]

.

4. Let

B =
1

2

(

A+AT
)

=
1

2

([

2 5
−7 2

]

+

[

2 −7
5 2

])

=

[

2 −1
−1 2

]

which is a symmetric matrix, and xTAx = xTBx. The eigenvalues of B can be
found as:

det (B − λI) =

∣

∣

∣

∣

2− λ −1
−1 2− λ

∣

∣

∣

∣

= λ2 − 4λ+ 3 = 0

=⇒ λ = 1 or 3.

From class, we can have

λmin ≤ R(x) =
xTAx

xTx
=

xTBx

xTx
≤ λmax

where λmin and λmax are the minimum and maximum eigenvalues ofB, respectively.
Since λmmin = 1, we have

minx 6=0R(x) = 1.

Besides, x achieves minx 6=0R (x) if x belongs to the eigenspace corresponding to
λmin. Since

B − λminI =

[

1 −1
−1 1

]

we can choose x =

[

1
1

]

or any nonzero scalar multiple of

[

1
1

]

.
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5. (a) We have γ = {e1, e2}, where

e1 =

[

1
0

]

, e2 =

[

0
1

]

.

Let β = {V 1,V 2,V 3,V 4}, where

V 1 =

[

1 0
0 0

]

, V 2 =

[

0 1
0 0

]

, V 3 =

[

0 0
1 0

]

, V 4 =

[

0 0
0 1

]

.

Since

T (V 1) =

[

1 0
0 0

] [

1
3

]

=

[

1
0

]

= 1 · e1 + 0 · e2

T (V 2) =

[

0 1
0 0

] [

1
3

]

=

[

3
0

]

= 3 · e1 + 0 · e2

T (V 3) =

[

0 0
1 0

] [

1
3

]

=

[

0
1

]

= 0 · e1 + 1 · e2

T (V 4) =

[

0 0
0 1

] [

1
3

]

=

[

0
3

]

= 0 · e1 + 3 · e2

we can have

[T ]γβ =

[

1 3 0 0
0 0 1 3

]

.

(b) From (a), we can find that























−3
1
0
0









,









0
0
−3
1























forms a basis for N
(

[T ]γβ

)

.

Therefore, the kernel of T is given by the span of −3V 1+V 2 and −3V 3+V 4.

(c) Let ω = {w1,w2} , where

w1 =

[

1
1

]

, w2 =

[

1
2

]

.

Since

T (V 1) =

[

1 0
0 0

] [

1
3

]

=

[

1
0

]

= 2 ·w1 + (−1) ·w2

T (V 2) =

[

0 1
0 0

] [

1
3

]

=

[

3
0

]

= 6 ·w1 + (−3) ·w2

T (V 3) =

[

0 0
1 0

] [

1
3

]

=

[

0
1

]

= (−1) ·w1 + 1 ·w2

T (V 4) =

[

0 0
0 1

] [

1
3

]

=

[

0
3

]

= (−3) ·w1 + 3 ·w2

we can have

[T ]ωβ =

[

2 6 −1 −3
−1 −3 1 3

]

.
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6. (a) Perform the singular value decomposition, and we can have

A = UΣV T =





−
√
6/6 −

√
2/2

√
3/3√

6/3 0
√
3/3

−
√
6/6

√
2/2

√
3/3









√
3 0
0 1
0 0





[√
2/2 −

√
2/2√

2/2
√
2/2

]

.

(b) Since there are 2 nonzero singular values of A, the rank of A is 2. The
dimension of the column space of A is 2, and an orthonormal basis for the
column space of A can be obtained as the first two columns of U , i.e.,





−
√
6/6√
6/3

−
√
6/6



 ,





−
√
2/2
0√
2/2



 .

(c) Since A has full column rank, there is a left inverse for A. We can have

A+A = I

and hence the pseudoinverse

A+ = V Σ+UT

=

[

−2/3 1/3 1/3
−1/3 −1/3 2/3

]

is a left inverse for A.

(d) The shortest least squares solution is

A+b =

[

1/3
−1/3

]

.

(e) We can have

xr = A+b =

[

1/3
−1/3

]

.
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