EE 2030 Linear Algebra Spring 2013

1.

Solution to Midterm Examination No. 2

(a) We can obtain the RRE form of A as

1000 1000
0111 0100
A=10011| = B=|y011
112 2 0000

Since the pivot rows are the first, second, and third rows, these three rows
constitute a basis for C(A”). Let

A 1000
A=1010 0
0011

Then we can obtain the projection matrix P onto C(A”) as

0 0 0
1 0 0
0 1/2 1/2
0 1/2 1/2

p_A" (AAT)l A-

o O O =

To find the projection matrix @ onto N(A), we first find a basis for N'(A).
Since the free column of R is the fourth column, we can find the special

solution by letting x4, = 1, and then x;1 = 0, 3 = 0, z3 = —1. Hence a
0 0
basis for N(A) is _01 . Let A = _01 . Then we can obtain the
1 1
projection matrix @ onto N'(A) as
00 0 0
(AT R\l aT 00 0 0
Q_A<A A) A =100 12 —1p2
00 —1/2 1/2
From (a), we can have
1 0 0 0 00 0 0 1 000
01 O 0 00 0 0 01 00
PrQ@=109 012 12| 00 12 —1)2 0010
00 1/2 1/2 00 —1/2 1/2 000 1

which is exactly the identity matrix. The reason is as follows. For any & € R*,
we can decompose it into

r=x,+x,
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2.

where , € C(AT) and x,, € N(A). Since C(A") and N(A) are orthogonal,

we can have
Px,=0 and Qx, = 0.
Hence, we can have
(P+Qx=P+Q)x,+(P+Q)x,=Px,+Qx, =z, +x, =<

which means

P+Q=1
(¢) We can have
10 0 0 00 0 0 0000
PQ - 01 O 0 00 0 0 0000
“loo 12 12|00 12 —1/2 0000
00 1/21/2|]00 —1/2 1/2 0000

Since C(A”T) and N'(A) are orthogonal, we can have
PQx = PQ(xz, + z,) = P(Qx, + Qx,) = Px, =0

for any € R*. Hence we can obtain PQ = O, the zero matrix.
(d) We can have

10 0 0 00 0 0 1000
p_g-|01 0 0 00 0 0 0100
00 1/2 1/2 00 1/2 —1/2 0001
00 1/2 1/2 00 —1/2 1/2 0010

which is a row-exchanging matrix (exchanging rows 3 and 4) and is its own
inverse. In general, we can have

(P-Q)(P-Q)
= P’-PQ-QP+ @
—P’-0-0+@Q* (sincePQ=QP=0)
=P+Q ( since P and Q are projection matrices
and hence P> = P and Q* = Q)
=1

Therefore, P — @ is its own inverse.

(a) Let A=[a; ay |, where

a; = ay) =

~J Ot i~ W =
co O oo O



By Gram-Schmidt process, we can have

1 1
3 3
A, 1
A1 = a| = 4: g, = w7 — 7% 4:
5 ! ”Al” 10 5
- 7 = - 7 =
-7 -7
3 A 3
A2:a2—((I1Ta2)Q1 4 = Q2:—2:_ 4
|Azf 10
-5 -5
1 1

Hence, {q,, q,} is an orthonormal basis for the column space of A.

(b) From (a), we can have

A=[a a]=]gq q2}|:

where

Q=[q a]=

(c¢) The least squares solution & is given by

T T
qg;a q;ax |
0 gqjas } =0k

[ 1/10 —7/10 ]
3/10  3/10 0 10
2/5 2/5 |, R= :
AR N
| 7/10 1/10 |

AT Az = ATb.

Since A = QR, we can then have

which gives

Therefore,

Rz =Q"b

8
I

10 10
0 10

Ml

o[ 5]

3. (a) The inner product (uj(x),us(x)) is given by

/Olul(x)w(x)dx:/oly(%—1)d3;:/01(2x_1)dx:0.

Hence, u;(z) and uz(x) are orthogonal.
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(b) We can have

1 1
Hul(x)sz/O 1-1dx:/0 lde =1

1 1
1
s () |2 :/ (2x —1) - (2x—1)dx:/ (42° — 4z + 1) do = 3
0 0

Therefore, |Ju; () || = 1 and |Juy (z) || = 1/4/3.
(c) Let qi(x) = wi(z)/us(z)]| = 1 and ga(x) = ua(x)/uz(2)|| = V3(2x — 1);
then ¢;(z) and ¢o2(x) are orthonormal. The best least squares approximation

to h(z) by a linear function is hence given by

h(z) = (@i(2), h(x)) a(@) + {a(x), h(2)) g2(x)

2 2
_ 21123 o7 — 1
3 +15\/§ \/g(x )
4 +4
= —x _
5 15
since
! 2
<ql(w),h(x)>=/ \/dezg
0
and
' 9
(@000 = [ Viv32e - 1ds = 5.
0
(a) We can have
111 1 111 1
1 2 3 4 B 01 2 3
13 6 10| |0 2 5 9
1 4 10 20 03 9 19
1 1 1 1
101 2 3
o001 3
0 0 3 10
1 1 11
101 2 3
0 01 3
0001
2 3
(b) Forn = 1, we have det(A) = |2| = 2. For n = 2, we have det(A) :' 2 ‘ _

—1. For n > 3, consider any three consecutive rows in A:

TrOwW 1 7+ 1 7+ 2 1+n

row i + 1 (t+1)+1 (@+1)4+2 -+ (i+1)+n
row @ + 2 (i+2)+1 (i+2)+2 -+ (i+2)+n




Since 2x (row ¢ + 1) = (row i) + (row ¢ + 2), the rows of A are dependent.
Therefore, A is singular and det(A) = 0.

(c) Let A, be the n by n tridiagonal —1, 2, 2 matrix and B,, = det(A,,). We can
then have

B, = B,_1 +2B,_».

Since By =1 and By = ) ; _11

B, = B3+2B; = 11. Finally, the desired determinant is B; = B,+2B3 = 21.
(d) Since

= 3, we can obtain B3 = By +2B; = 5 and

11 1 1 1 1 1 1]t 1 1 1 1 1 1 1
11 1 1 -1 -1 -1 =1| |1t 1 1 1 -1 -1 -1 -1
11 -1 -10 0 0 Of|t 1 =1 -1 0 0 0 0
00 0 0 1 1 -1 =10 0 0 0 1 1 -1 —1
1 -1 0 0 0 0 0 Of[t -1 0 0 0 0 0 0
00 1 -1 0 0 0 Ofl0 0 1 =1 0 0 0 0
00 0 0 1 -1 0 000 0 0 1 -1 0 0
o0 0o 0 0 0 1 —1J0 0 0 0 0 0 1 -1}
800000 0 0]
08000000
00400000
00040000
00002000
00000200
00000020
0000000 2

the rows of this matrix are mutually orthogonal. It is a hypercube and the
absolute value of the volume is the product of the lengths of the row vectors.
Since the determinant is known to be positive, it is hence given by

V8 VB VA-VE N2 V2 V22 =198,

5. (a) False. Let A = (1) (1)

which is not equal to 1 + det(A) =1+ 1= 2.
(b) True. We can have

. We can have det(I + A) = det {(2) (2)] = 4,

Ax = Ay
— Ax— Ay=0
— A(x—y)=0.

Since & — y # 0, A is singular, which gives det(A) = 0.



(¢) True. We multiply S on both sides of the equality, which gives

SB=AS
— det(SB) = det(AS)
— det(S) det(B) = det(A) det(S)
= det(B) = det(A)

because S is nonsingular and det(S) # 0.
(d) True. Since A is nonsingular and det(A) # 0, we can have
L cr
det (A)
= CT =det(A)-A!
= det (C") = (det(A))" (det A7
— det (C) = (det(A))"".

6. The big formula states that the determinant of A is the sum of n! simple determi-
nants, times 1 or —1, and every simple determinant chooses one entry from each
row and column. Since A is a nonsingular matrix, det(A) # 0. It follows that
there exists at least one simple determinant of A avoiding all the zero entries in A.
Therefore, we can find a corresponding permutation matrix P for which the main
diagonal of P A is composed of all the nonzero entries in that simple determinant.



