題號: 56

國立臺灣大學101學年度碩士班招生考試試題

科目:常微分方程

節次: 2

題號: 56

共 | 頁之第 | 頁

1. Solve the ODEs and find its maximal interval of existence

(a) (5%)
$$y' = 1 + y^2$$
, $y(0) = y_0$;

- (b) (5%) $y' = y \ln y$, $y(0) = y_0 > 0$.
- 2. (a) (5%) Find the general solutions of the ODE: $y' + \frac{1}{t}y = t^2$.
 - (b) (5%) Find the Laplace transform of the function $\cos \omega t$.
- 3. (10%) Find general solutions of the ODE: $x^2y'' + bxy' + cy = 0$, where b, c are constants.
- 4. Consider the logistic model

$$y' = ry\left(1 - \frac{y}{K}\right), \ y(0) = y_0,$$

where r > 0, K > 0 are two constants and $0 < y_0 < K$.

- (a) (5%) Find its general solutions.
- (b) (5%) Discuss the solution behavior (stable, unstable) as t tends to infinity.
- (c) (10%) Consider the harvest model

$$y' = ry\left(1 - \frac{y}{K}\right) - ey, \ 0 < y(0) = y_0 < K,$$

where e > 0 is the harvest rate. Discuss how the asymptotic solution depends on the harvest rate e.

5. Consider the damped oscillation system with periodic forcing:

$$y'' + \alpha y' + \beta y = F_0 \cos(\Omega t),$$

where, $\alpha > 0, \beta > 0$, F_0 and Ω are constants.

(a) (10%) Find the solution to this system with initial condition

$$y(0) = y_0, \ y'(0) = v_0.$$

- (b) (10%) Discuss the asymptotic behaviors of the solutions (that is, what is the limit of y(t) as $t \to \infty$).
- 6. Consider the conservative mechanical system in R with a unit mass:

$$\ddot{x} = -V'(x),$$

where V(x) is the potential function and -V'(x) is the force.

- (a) (10%) Show that the energy $E(t):=\frac{1}{2}|\dot{x}(t)|^2+V(x(t))$ is independent of time.
- (b) (10%) Show that if $V(x)\to\infty$ as $|x|\to\infty$, then all solutions with finite energy are periodic. (Constant solution is treated as a periodic solution.)
- (c) (10%) Suppose the system has a damping term:

$$\ddot{x} = -V'(x) - \beta \dot{x}$$

where $\beta > 0$ is the damping coefficient. Assume V(x) is strictly convex and $V(x) \to \infty$ as $|x| \to \infty$. Show that all solutions tend to x_0 , the unique global minimum of V.