Homework Assignment No. 1

Due 10:10am, March 17, 2021
Reading: Biggs: Chapters 1 Statements and Proofs, 3 The Logical Framework; Grimaldi: Sections 3.1 Sets and Subsets, 3,2 Set Operations and the Laws of Set Theory, 4.1 The Well-Ordering Principle: Mathematical Induction, 4.2 Recursive Definitions, 5.2 Functions: Plain and One-to-One, 5.3 Onto Functions: Stirling Numbers of the Second Kind (up to right before Example 22), 5.4 Special Functions, 5.5 The Pigeonhole Principle, 5.6 Function Composition and Inverse Functions.

Problems for Solution:

1. Determine whether or not the given pairs are logically equivalent, where p, q, and r are statements.
(a) $\neg(p \Leftrightarrow q)$ and $\neg p \Leftrightarrow q$.
(b) $(p \wedge q) \Rightarrow r$ and $(p \Rightarrow r) \vee(q \Rightarrow r)$.
(c) $p \Rightarrow(q \vee r)$ and $(p \Rightarrow q) \wedge(p \Rightarrow r)$.
2. The symmetric difference of sets A and B, denoted by $A \triangle B$, is defined to be the set containing those elements in either A or B, but not in both A and B, i.e., $A \triangle B=$ $(A \cup B)-(A \cap B)$.
(a) Find the symmetric difference of $\{1,2,3,4,5\}$ and $\{4,5,6,7,8\}$.
(b) Show that $A \triangle B=(A-B) \cup(B-A)$.
3. The nth Fibonacci number F_{n} is defined recursively by

$$
F_{0}=0, \quad F_{1}=1, \quad F_{n+1}=F_{n}+F_{n-1}, \text { for } n \geq 1
$$

Show that

$$
\sum_{i=1}^{n} \frac{F_{i-1}}{2^{i}}=1-\frac{F_{n+2}}{2^{n}}, \text { for all } n \geq 1
$$

4. What is wrong with the following "proof?"

Theorem $a^{n}=1$ for all nonnegative integers n, whenever a is a nonzero real number.
Proof Induction basis: $a^{0}=1$ is true by the definition of a^{0}.
Induction step: Assume that $a^{j}=1$ for $j=0,1, \ldots, k$. We then have

$$
a^{k+1}=\frac{a^{k} \cdot a^{k}}{a^{k-1}}=\frac{1 \cdot 1}{1}=1
$$

which completes the induction step.
5. Consider functions $f: A \rightarrow B$ and $g: B \rightarrow C$. For each of the following statements, prove it if it is true; otherwise, find a counterexample.
(a) If $g \circ f$ is surjective, then so is f.
(b) If $g \circ f$ is surjective, then so is g.
6. The function $f: A \rightarrow B$ is said to have a left inverse $l: B \rightarrow A$ if

$$
(l \circ f)(a)=a, \text { for all } a \in A
$$

(a) Show that if f has a left inverse then it is injective.
(b) Show that if f is injective then it has a left inverse.
7. Prove that if any 101 different numbers are selected from the set $\{1,2,3, \ldots, 200\}$, then two of the chosen numbers are consecutive.
8. Prove that if $S=\{1,2,3, \ldots, 2 n+1\}$, for $n \in \mathcal{N}$, then any subset of size $n+2$ from S must contain two elements whose sum is $2 n+2$.

Homework Collaboration Policy: I allow and encourage discussion or collaboration on the homework. However, you are expected to write up your own solution and understand what you turn in. Late homework is subject to a penalty of 5% to 40% of your total points.

