## Solution to Homework Assignment No. 3

1. The corresponding characteristic equation is

$$r^{2} + 4r + 8 = 0$$
  
 $\Rightarrow r = -2 + 2j, -2 - 2j$   
 $\Rightarrow r = 2\sqrt{2}e^{j(3\pi/4)}, 2\sqrt{2}e^{-j(3\pi/4)}.$ 

Hence the general solution is

$$a_n = \beta_1 2^{3n/2} \cos(3n\pi/4) + \beta_2 2^{3n/2} \sin(3n\pi/4).$$

For initial conditions,

$$0 = a_0 = \beta_1$$
  

$$2 = a_1 = 2\sqrt{2} \left( -\frac{1}{\sqrt{2}}\beta_1 + \frac{1}{\sqrt{2}}\beta_2 \right)$$
  

$$\Rightarrow \quad \beta_1 = 0, \beta_2 = 1.$$

Therefore,  $a_n = 2^{3n/2} \sin(3n\pi/4)$ , for  $n \ge 0$ .

2. The characteristic equation of the associated homogeneous recurrence relation is

$$r^{2} - 6r + 9 = 0$$
  
$$\Rightarrow (r - 3)^{2} = 0$$
  
$$\Rightarrow r = 3, 3.$$

Hence the general solution to the associated homogeneous recurrence relation is

$$a_n = \alpha_1 3^n + \alpha_2 n 3^n.$$

Let the trial sequence for a particular solution to the nonhomogeneous recurrence relation be  $p_n = B_0 2^n + B_1 n^2 3^n$ . Then

$$\begin{bmatrix} B_0 2^{n+2} + B_1 (n+2)^2 3^{n+2} \end{bmatrix} - 6 \begin{bmatrix} B_0 2^{n+1} + B_1 (n+1)^2 3^{n+1} \end{bmatrix} + 9 (B_0 2^n + B_1 n^2 3^n)$$
  
=  $3 \cdot 2^n + 7 \cdot 3^n$   
 $\Rightarrow (4 - 12 + 9) B_0 2^n + (9(n+2)^2 - 18(n+1)^2 + 9n^2) B_1 3^n = 3 \cdot 2^n + 7 \cdot 3^n$   
 $\Rightarrow B_0 2^n + 18 B_1 3^n = 3 \cdot 2^n + 7 \cdot 3^n$   
 $\Rightarrow B_0 = 3, B_1 = \frac{7}{18}.$ 

Therefore,  $p_n = 3 \cdot 2^n + (7/18)n^2 3^n$  is a particular solution to the nonhomogeneous recurrence relation. Hence the general solution to the nonhomogeneous recurrence relation is

$$a_n = \alpha_1 3^n + \alpha_2 n 3^n + 3 \cdot 2^n + \frac{7}{18} n^2 3^n.$$

For initial conditions,

$$1 = a_0 = \alpha_1 + 3$$
  

$$4 = a_1 = 3\alpha_1 + 3\alpha_2 + 6 + \frac{7}{6}$$
  

$$\Rightarrow \quad \alpha_1 = -2, \alpha_2 = \frac{17}{18}.$$

Therefore,  $a_n = -2 \cdot 3^n + (17/18)n3^n + 3 \cdot 2^n + (7/18)n^2 3^n$ , for  $n \ge 0$ .

## **3.** Observing $a_1 = 1^3$ , $a_2 = 1^3 + 2^3$ , $a_3 = 1^3 + 2^3 + 3^3$ , ..., we have the recurrence relation

$$a_{n+1} - a_n = (n+1)^3$$
, for  $n \ge 1$  with  $a_1 = 1$ .

The associated homogeneous recurrence relation (HRR) is  $a_{n+1} - a_n = 0$ , which gives the characteristic equation

$$r - 1 = 0 \Rightarrow r = 1.$$

So the general solution to the associated HRR is  $a_n = \alpha_1$ . Let the trial sequence to the nonhomogeneous recurrence relation (NRR) be  $B_4n^4 + B_3n^3 + B_2n^2 + B_1n$ . Then

$$B_4(n+1)^4 + B_3(n+1)^3 + B_2(n+1)^2 + B_1(n+1) - (B_4n^4 + B_3n^3 + B_2n^2 + B_1n)$$
  
=  $(n+1)^3$   
$$\Rightarrow B_4(4n^3 + 6n^2 + 4n + 1) + B_3(3n^2 + 3n + 1) + B_2(2n+1) + B_1 = (n+1)^3$$
  
$$\Rightarrow B_4 = 1/4, B_3 = 1/2, B_2 = 1/4, B_1 = 0.$$

The general solution to the NRR is  $a_n = (1/4)n^4 + (1/2)n^3 + (1/4)n^2 + \alpha_1$ . For the initial condition, we have

$$a_1 = \frac{1}{4} + \frac{1}{2} + \frac{1}{4} + \alpha_1 = 1$$
  
 $\Rightarrow \alpha_1 = 0.$ 

Therefore,

$$a_n = (1/4)n^4 + (1/2)n^3 + (1/4)n^2 = \left(\frac{n(n+1)}{2}\right)^2$$
, for  $n \ge 1$ .

4. The recurrence relation for this problem is

$$a_{n+1} - (1 + r/12)a_n = -D$$

with  $a_0 = C$  and  $a_{12N} = 0$ . The associated HRR is  $a_{n+1} - (1+r/12)a_n = 0$  which gives the characteristic equation  $\lambda - (1+r/12) = 0$  with root 1+r/12. Hence the general solution to the associated HRR is  $a_n = \alpha \cdot (1+r/12)^n$ . Try a particular solution to the NRR as A. Then  $A - (1+r/12) \cdot A = -D$ , which gives A = 12D/r. Thus the general solution to the NRR is  $a_n = \alpha (1 + r/12)^n + 12D/r$ . For conditions  $a_0 = C$  and  $a_{12N} = 0$ , we have

$$a_0 = \alpha + \frac{12D}{r} = C$$
  
 $a_{12N} = \alpha \left(1 + \frac{r}{12}\right)^{12N} + \frac{12D}{r} = 0$ 

which gives

$$\left(C - \frac{12}{r}D\right)\left(1 + \frac{r}{12}\right)^{12N} + \frac{12}{r}D = 0.$$

Therefore, we obtain

$$D = C \cdot \frac{(r/12)(1+r/12)^{12N}}{(1+r/12)^{12N}-1}.$$

5. Let the generating function for  $a_n$  be A(x). Taking generating functions on both sides of the recurrence relation, we have

$$\sum_{n \ge 2} a_n x^n - \sum_{n \ge 2} a_{n-1} x^n - 2 \cdot \sum_{n \ge 2} a_{n-2} x^n = \sum_{n \ge 2} 2^n x^n$$

which yields

$$(A(x) - a_1x - a_0) - x(A(x) - a_0) - 2x^2A(x) = \frac{1}{1 - 2x} - 1 - 2x.$$

We thus obtain

$$A(x) - 12x - 4 - xA(x) + 4x - 2x^{2}A(x) = \frac{4x^{2}}{1 - 2x}$$
  
$$\Rightarrow (1 - x - 2x^{2})A(x) = \frac{4x^{2}}{1 - 2x} + 8x + 4$$
  
$$\Rightarrow A(x) = \frac{4 - 12x^{2}}{(1 + x)(1 - 2x)^{2}} = \frac{2/3}{(1 - 2x)^{2}} + \frac{38/9}{1 - 2x} + \frac{-8/9}{1 + x}.$$

Therefore,

$$a_n = \frac{44}{9}2^n - \frac{8}{9}(-1)^n + \frac{2}{3}n2^n$$
, for  $n \ge 0$ .

6. Let the generating function for  $F_n$  and  $L_n$  be F(x) and L(x), respectively. Taking generating functions on both sides of the relation, we have

$$\sum_{n \ge 1} L_n x^n = \sum_{n \ge 1} F_{n+1} x^n + \sum_{n \ge 1} F_{n-1} x^n$$

which yields

$$L(x) - L_0 = \frac{F(x) - F_1 x - F_0}{x} + xF(x).$$

Recalling that

we thus have

$$F(x) = \frac{x}{1 - x - x^2}$$
$$L(x) = \frac{(1 + x^2)F(x)}{x} + 1$$
$$= \frac{2 - x}{1 - x - x^2}.$$

7. (a) Let the generating functions for a<sub>n</sub> and b<sub>n</sub> be A(x) and B(x), respectively. We have

$$A(x) - a_0 = -2xA(x) - 4xB(x)$$
  
 $B(x) - b_0 = 4xA(x) + 6xB(x)$ 

which yields

$$(1+2x)A(x) + 4xB(x) = 1$$
  
-4xA(x) + (1-6x)B(x) = 0.

We obtain

$$A(x) = \frac{1 - 6x}{1 - 4x + 4x^2}.$$

Then

$$A(x) = \frac{3}{1 - 2x} + \frac{-2}{(1 - 2x)^2}.$$

Hence, for  $n \ge 0$ ,

$$a_n = 3 \cdot 2^n - 2(n+1)2^n = 2^n - n2^{n+1}$$

(b) From (a), we obtain

$$B(x) = \frac{4x}{1 - 4x + 4x^2}.$$

Then

$$B(x) = \frac{-2}{1 - 2x} + \frac{2}{(1 - 2x)^2}.$$

Hence, for  $n \ge 0$ ,

$$b_n = -2 \cdot 2^n + 2(n+1)2^n = n2^{n+1}.$$

8. (a) From Problem 7(a), we have

$$(1 - 4x + 4x^2)A(x) = 1 - 6x$$

yielding

$$a_0 = 1$$
  

$$a_1 - 4a_0 = -6$$
  

$$a_n - 4a_{n-1} + 4a_{n-2} = 0, \text{ for } n \ge 2.$$

Therefore, the recurrence relation that  $a_n$  satisfies is

$$a_n - 4a_{n-1} + 4a_{n-2} = 0$$
, for  $n \ge 2$ 

with  $a_0 = 1$  and  $a_1 = -2$ .

(b) From Problem 7(b), we have

$$(1 - 4x + 4x^2)B(x) = 4x$$

yielding

$$b_0 = 0$$
  

$$b_1 - 4b_0 = 4$$
  

$$b_n - 4b_{n-1} + 4b_{n-2} = 0, \text{ for } n \ge 2.$$

Therefore, the recurrence relation that  $b_n$  satisfies is

$$b_n - 4b_{n-1} + 4b_{n-2} = 0$$
, for  $n \ge 2$ 

with  $b_0 = 0$  and  $b_1 = 4$ .