Solution to Homework Assignment No. 3

1. The corresponding characteristic equation is

$$
\begin{aligned}
& r^{2}+4 r+8=0 \\
\Rightarrow & r=-2+2 j,-2-2 j \\
\Rightarrow & r=2 \sqrt{2} e^{j(3 \pi / 4)}, 2 \sqrt{2} e^{-j(3 \pi / 4)} .
\end{aligned}
$$

Hence the general solution is

$$
a_{n}=\beta_{1} 2^{3 n / 2} \cos (3 n \pi / 4)+\beta_{2} 2^{3 n / 2} \sin (3 n \pi / 4) .
$$

For initial conditions,

$$
\begin{aligned}
& 0=a_{0}=\beta_{1} \\
& 2=a_{1}=2 \sqrt{2}\left(-\frac{1}{\sqrt{2}} \beta_{1}+\frac{1}{\sqrt{2}} \beta_{2}\right) \\
& \Rightarrow \quad \beta_{1}=0, \beta_{2}=1 .
\end{aligned}
$$

Therefore, $a_{n}=2^{3 n / 2} \sin (3 n \pi / 4)$, for $n \geq 0$.
2. The characteristic equation of the associated homogeneous recurrence relation is

$$
\begin{aligned}
& r^{2}-6 r+9=0 \\
\Rightarrow & (r-3)^{2}=0 \\
\Rightarrow & r=3,3 .
\end{aligned}
$$

Hence the general solution to the associated homogeneous recurrence relation is

$$
a_{n}=\alpha_{1} 3^{n}+\alpha_{2} n 3^{n} .
$$

Let the trial sequence for a particular solution to the nonhomogeneous recurrence relation be $p_{n}=B_{0} 2^{n}+B_{1} n^{2} 3^{n}$. Then

$$
\begin{aligned}
& {\left[B_{0} 2^{n+2}+B_{1}(n+2)^{2} 3^{n+2}\right]-6\left[B_{0} 2^{n+1}+B_{1}(n+1)^{2} 3^{n+1}\right]+9\left(B_{0} 2^{n}+B_{1} n^{2} 3^{n}\right) } \\
& =3 \cdot 2^{n}+7 \cdot 3^{n} \\
\Rightarrow & (4-12+9) B_{0} 2^{n}+\left(9(n+2)^{2}-18(n+1)^{2}+9 n^{2}\right) B_{1} 3^{n}=3 \cdot 2^{n}+7 \cdot 3^{n} \\
\Rightarrow & B_{0} 2^{n}+18 B_{1} 3^{n}=3 \cdot 2^{n}+7 \cdot 3^{n} \\
\Rightarrow & B_{0}=3, B_{1}=\frac{7}{18} .
\end{aligned}
$$

Therefore, $p_{n}=3 \cdot 2^{n}+(7 / 18) n^{2} 3^{n}$ is a particular solution to the nonhomogeneous recurrence relation. Hence the general solution to the nonhomogeneous recurrence relation is

$$
a_{n}=\alpha_{1} 3^{n}+\alpha_{2} n 3^{n}+3 \cdot 2^{n}+\frac{7}{18} n^{2} 3^{n} .
$$

For initial conditions,

$$
\begin{aligned}
& 1=a_{0}=\alpha_{1}+3 \\
& 4 \\
&=a_{1}=3 \alpha_{1}+3 \alpha_{2}+6+\frac{7}{6} \\
& \Rightarrow \quad \alpha_{1}=-2, \alpha_{2}=\frac{17}{18}
\end{aligned}
$$

Therefore, $a_{n}=-2 \cdot 3^{n}+(17 / 18) n 3^{n}+3 \cdot 2^{n}+(7 / 18) n^{2} 3^{n}$, for $n \geq 0$.
3. Observing $a_{1}=1^{3}, a_{2}=1^{3}+2^{3}, a_{3}=1^{3}+2^{3}+3^{3}, \ldots$, we have the recurrence relation

$$
a_{n+1}-a_{n}=(n+1)^{3}, \text { for } n \geq 1 \text { with } a_{1}=1
$$

The associated homogeneous recurrence relation (HRR) is $a_{n+1}-a_{n}=0$, which gives the characteristic equation

$$
r-1=0 \Rightarrow r=1
$$

So the general solution to the associated HRR is $a_{n}=\alpha_{1}$. Let the trial sequence to the nonhomogeneous recurrence relation (NRR) be $B_{4} n^{4}+B_{3} n^{3}+B_{2} n^{2}+B_{1} n$. Then

$$
\begin{aligned}
& B_{4}(n+1)^{4}+B_{3}(n+1)^{3}+B_{2}(n+1)^{2}+B_{1}(n+1)-\left(B_{4} n^{4}+B_{3} n^{3}+B_{2} n^{2}+B_{1} n\right) \\
& =(n+1)^{3} \\
\Rightarrow & B_{4}\left(4 n^{3}+6 n^{2}+4 n+1\right)+B_{3}\left(3 n^{2}+3 n+1\right)+B_{2}(2 n+1)+B_{1}=(n+1)^{3} \\
\Rightarrow & B_{4}=1 / 4, B_{3}=1 / 2, B_{2}=1 / 4, B_{1}=0 .
\end{aligned}
$$

The general solution to the NRR is $a_{n}=(1 / 4) n^{4}+(1 / 2) n^{3}+(1 / 4) n^{2}+\alpha_{1}$. For the initial condition, we have

$$
\begin{aligned}
a_{1} & =\frac{1}{4}+\frac{1}{2}+\frac{1}{4}+\alpha_{1}=1 \\
\Rightarrow \quad \alpha_{1} & =0 .
\end{aligned}
$$

Therefore,

$$
a_{n}=(1 / 4) n^{4}+(1 / 2) n^{3}+(1 / 4) n^{2}=\left(\frac{n(n+1)}{2}\right)^{2}, \text { for } n \geq 1
$$

4. The recurrence relation for this problem is

$$
a_{n+1}-(1+r / 12) a_{n}=-D
$$

with $a_{0}=C$ and $a_{12 N}=0$. The associated HRR is $a_{n+1}-(1+r / 12) a_{n}=0$ which gives the characteristic equation $\lambda-(1+r / 12)=0$ with root $1+r / 12$. Hence the general solution to the associated HRR is $a_{n}=\alpha \cdot(1+r / 12)^{n}$. Try a particular solution to the NRR as A. Then $A-(1+r / 12) \cdot A=-D$, which gives $A=12 D / r$. Thus the
general solution to the NRR is $a_{n}=\alpha(1+r / 12)^{n}+12 D / r$. For conditions $a_{0}=C$ and $a_{12 N}=0$, we have

$$
\begin{aligned}
& a_{0}=\alpha+\frac{12 D}{r}=C \\
& a_{12 N}=\alpha\left(1+\frac{r}{12}\right)^{12 N}+\frac{12 D}{r}=0
\end{aligned}
$$

which gives

$$
\left(C-\frac{12}{r} D\right)\left(1+\frac{r}{12}\right)^{12 N}+\frac{12}{r} D=0
$$

Therefore, we obtain

$$
D=C \cdot \frac{(r / 12)(1+r / 12)^{12 N}}{(1+r / 12)^{12 N}-1}
$$

5. Let the generating function for a_{n} be $A(x)$. Taking generating functions on both sides of the recurrence relation, we have

$$
\sum_{n \geq 2} a_{n} x^{n}-\sum_{n \geq 2} a_{n-1} x^{n}-2 \cdot \sum_{n \geq 2} a_{n-2} x^{n}=\sum_{n \geq 2} 2^{n} x^{n}
$$

which yields

$$
\left(A(x)-a_{1} x-a_{0}\right)-x\left(A(x)-a_{0}\right)-2 x^{2} A(x)=\frac{1}{1-2 x}-1-2 x
$$

We thus obtain

$$
\begin{aligned}
& A(x)-12 x-4-x A(x)+4 x-2 x^{2} A(x)=\frac{4 x^{2}}{1-2 x} \\
\Rightarrow & \left(1-x-2 x^{2}\right) A(x)=\frac{4 x^{2}}{1-2 x}+8 x+4 \\
\Rightarrow & A(x)=\frac{4-12 x^{2}}{(1+x)(1-2 x)^{2}}=\frac{2 / 3}{(1-2 x)^{2}}+\frac{38 / 9}{1-2 x}+\frac{-8 / 9}{1+x} .
\end{aligned}
$$

Therefore,

$$
a_{n}=\frac{44}{9} 2^{n}-\frac{8}{9}(-1)^{n}+\frac{2}{3} n 2^{n}, \quad \text { for } n \geq 0
$$

6. Let the generating function for F_{n} and L_{n} be $F(x)$ and $L(x)$, respectively. Taking generating functions on both sides of the relation, we have

$$
\sum_{n \geq 1} L_{n} x^{n}=\sum_{n \geq 1} F_{n+1} x^{n}+\sum_{n \geq 1} F_{n-1} x^{n}
$$

which yields

$$
L(x)-L_{0}=\frac{F(x)-F_{1} x-F_{0}}{x}+x F(x) .
$$

Recalling that

$$
F(x)=\frac{x}{1-x-x^{2}}
$$

we thus have

$$
\begin{aligned}
L(x) & =\frac{\left(1+x^{2}\right) F(x)}{x}+1 \\
& =\frac{2-x}{1-x-x^{2}} .
\end{aligned}
$$

7. (a) Let the generating functions for a_{n} and b_{n} be $A(x)$ and $B(x)$, respectively. We have

$$
\begin{aligned}
& A(x)-a_{0}=-2 x A(x)-4 x B(x) \\
& B(x)-b_{0}=4 x A(x)+6 x B(x)
\end{aligned}
$$

which yields

$$
\begin{array}{r}
(1+2 x) A(x)+4 x B(x)=1 \\
-4 x A(x)+(1-6 x) B(x)=0 .
\end{array}
$$

We obtain

$$
A(x)=\frac{1-6 x}{1-4 x+4 x^{2}}
$$

Then

$$
A(x)=\frac{3}{1-2 x}+\frac{-2}{(1-2 x)^{2}} .
$$

Hence, for $n \geq 0$,

$$
a_{n}=3 \cdot 2^{n}-2(n+1) 2^{n}=2^{n}-n 2^{n+1}
$$

(b) From (a), we obtain

$$
B(x)=\frac{4 x}{1-4 x+4 x^{2}}
$$

Then

$$
B(x)=\frac{-2}{1-2 x}+\frac{2}{(1-2 x)^{2}}
$$

Hence, for $n \geq 0$,

$$
b_{n}=-2 \cdot 2^{n}+2(n+1) 2^{n}=n 2^{n+1}
$$

8. (a) From Problem 7(a), we have

$$
\left(1-4 x+4 x^{2}\right) A(x)=1-6 x
$$

yielding

$$
\begin{gathered}
a_{0}=1 \\
a_{1}-4 a_{0}=-6 \\
a_{n}-4 a_{n-1}+4 a_{n-2}=0, \text { for } n \geq 2 .
\end{gathered}
$$

Therefore, the recurrence relation that a_{n} satisfies is

$$
a_{n}-4 a_{n-1}+4 a_{n-2}=0, \text { for } n \geq 2
$$

with $a_{0}=1$ and $a_{1}=-2$.
(b) From Problem 7(b), we have

$$
\left(1-4 x+4 x^{2}\right) B(x)=4 x
$$

yielding

$$
\begin{gathered}
b_{0}=0 \\
b_{1}-4 b_{0}=4 \\
b_{n}-4 b_{n-1}+4 b_{n-2}=0, \text { for } n \geq 2 .
\end{gathered}
$$

Therefore, the recurrence relation that b_{n} satisfies is

$$
b_{n}-4 b_{n-1}+4 b_{n-2}=0, \text { for } n \geq 2
$$

with $b_{0}=0$ and $b_{1}=4$.

