Solution to Homework Assignment No. 5

1. (a) No. From the corresponding undirected graph shown in Fig. 1, we can see that G is connected but not every vertex of G, e.g., D and E, has even degree.
(b) Yes. An Euler trail is given as

$$
D, C, A, C, F, A, F, B, F, E, B, A, E, A, D, E
$$

Figure 1: Graph G for Problem 1.
2. (a) A planar embedding of the graph is shown in Fig. 2, so this graph is planar.

Figure 2: A planar embedding of the graph in Problem 2.(a).
(b) This graph contains a subgraph that is homeomorphic to K_{5} as shown in Fig. 3, so it is nonplanar.

Figure 3: A subgraph of the graph in Problem 2.(b).
3. (a) If this graph has no cycles, since $e>2$, the number of edges must be at least 3 . If there are cycles, since it is a simple graph, the length of the shortest cycle is at least 3 . Hence the girth g is at least 3. For any connected planar simple graph with $g \geq 3$, the edge-vertex inequality gives

$$
e \leq(g /(g-2))(v-2)
$$

Since $g \geq 3, g \leq 3 g-6$, which implies $g /(g-2) \leq 3$. Therefore,

$$
e \leq 3(v-2)=3 v-6
$$

(b) If all vertices have degree at least 6 , then

$$
e \geq 6 v / 2=3 v
$$

which contradicts $e \leq 3 v-6$. Therefore, G is nonplanar.
4. A Hamilton cycle is given as

$$
a, b, c, d, e, j, i, h, g, l, m, n, o, t, s, r, q, p, k, f, a .
$$

5. (a) This can be proved by contrapositive. Assume that the graph G has no cycles. Then G is a tree since G is connected. However, G has the same numbers of vertices and edges, which violates the property $|V|=|E|+1$. Hence, G has at least one cycle.
(b) Let i be the number of internal vertices. Then $n=m i+1$. We have

$$
\begin{aligned}
l & =n-i \\
& =n-\frac{n-1}{m} \\
& =\frac{(m-1) n+1}{m} .
\end{aligned}
$$

6. Preorder traversal: $a, b, d, e, i, m, n, o, j, c, f, g, h, k, p, l$.

Postorder traversal: $d, m, n, o, i, j, e, b, f, g, p, k, l, h, c, a$.
Inorder traversal: $d, b, m, i, n, o, e, j, a, f, c, g, p, k, h, l$.
7. (a) The depth-first spanning tree is shown in Fig. 4. The height of the tree is 9 .

Figure 4: Depth-first spanning tree for Problem 7.(a).
(b) The breadth-first spanning tree is shown in Fig. 5. The height of the tree is 2.

Figure 5: Breadth-first spanning tree for Problem 7.(b).
8. (a) Splitting tree:

$$
4,1,2,5,10,8,7,9,6,3
$$

Merging tree:

(b) Splitting tree:

Merging tree:

