Solution to Homework Assignment No. 6

1. (a) The shortest path from b to g is b, c, d, h, g.
(b) A tree of shortest paths from vertex a to all the other vertices is given in Fig. 1.

Figure 1: A tree of shortest paths from vertex a for Problem 1.(b).
2. A counterexample is given in Fig. 2, where the edge with minimum weight is $\left\{v_{1}, v_{2}\right\}$, which is not included in the shortest path from v_{0} to v_{1} or v_{2}.

Figure 2: A counterexample for Problem 2.
3. A minimal spanning tree is shown in Fig. 3.

Figure 3: A minimal spanning tree for Problem 3.
4. (a) procedure modified Kruskal
$T:=\varnothing$

```
            for }i=1\mathrm{ to }|V|-1 d
            e:= an edge of maximum weight not in T that does not form a cycle
            when added to T
            add e to T
        end for
end procedure
```

(b) A maximal spanning tree is shown in Fig. 4.

Figure 4: A maximal spanning tree for Problem 4.(b).
5. Consider a bipartite graph $G=(X \cup Y, E)$ where X is the set of girls and Y is the set of boys. There is an edge in E linking $x \in X$ and $y \in Y$ if girl x likes boy y. For any $A \subseteq X$, the number of edges incident to vertices in A is $4 \cdot|A|$, while the number of edges incident to vertices in $R(A)$ is $4 \cdot|R(A)|$. Since every edge incident to a vertex in A must be an edge incident to a vertex in $R(A)$, we have $4 \cdot|A| \leq 4 \cdot|R(A)|$, implying $|A| \leq|R(A)|$. By Hall's theorem, there exists a complete matching.
6. (a) This problem can be considered as finding a complete matching for the bipartite graph shown in Fig. 5. A complete matching is found and shown in Fig. 6. Hence, $(6,5,2,4,1)$ is an SDR.

Figure 5: A bipartite graph for Problem 6.(a).
(b) Since the 5 sets $\{a, m\},\{a, r, e\},\{m, a, e\},\{m, e\},\{r, a, m\}$ include only the 4 elements a, e, m, r, by Hall's Theorem, a complete matching is not possible for the associated bipartite graph. Hence, no SDR exists.

Figure 6: A complete matching for Problem 6.(a).

S	$\{s\}$	$\{s, a\}$	$\{s, b\}$	$\{s, c\}$	$\{s, a, b\}$	$\{s, a, c\}$	$\{s, b, c\}$	$\{s, a, b, c\}$
T	$\{a, b, c, t\}$	$\{b, c, t\}$	$\{a, c, t\}$	$\{a, b, t\}$	$\{c, t\}$	$\{b, t\}$	$\{a, t\}$	$\{t\}$
$\operatorname{cap}(S, T)$	7	9	8	11	7	12	9	7

Table 1: All the cuts and corresponding capacities for Problem 7.(a).
7. (a) All the cuts (S, T) and corresponding capacities $\operatorname{cap}(S, T)$ are shown in Table 1.
(b) The maximum value of a flow from s to t is equal to the minimum capacity of a cut separating s and t. Therefore, the maximum value of a flow from s to t is 7 .
8. (a) The value of the flow f is the outflow of the source s. Therefore, the value of the flow f is 6 .
(b) A maximum flow f_{1} for this network is given by

$$
\begin{aligned}
& f_{1}(s, a)=f_{1}(f, i)=f_{1}(i, t)=6 \\
& f_{1}(s, b)=f_{1}(s, c)=f_{1}(c, f)=4 \\
& f_{1}(b, a)=f_{1}(b, f)=2 \\
& f_{1}(a, d)=f_{1}(d, g)=f_{1}(g, t)=8
\end{aligned}
$$

with all other $f_{1}(x, y)=0$. Hence its value is $f_{1}(s, a)+f_{1}(s, b)+f_{1}(s, c)=14$.
(c) A minimum cut (S, T) for this network is given by

$$
\begin{aligned}
& S=\{s, a, b, c, d, e, f, g, h\} \\
& T=\{i, t\} .
\end{aligned}
$$

