
EECS 2060 Discrete Mathematics Spring 2021

Solution to Homework Assignment No. 6

1. (a) The shortest path from b to g is b, c, d, h, g.

(b) A tree of shortest paths from vertex a to all the other vertices is given in Fig. 1.

a

b

c

d

e

f g

h

1

2 1 5

6

6 4

Figure 1: A tree of shortest paths from vertex a for Problem 1.(b).

2. A counterexample is given in Fig. 2, where the edge with minimum weight is {v1, v2},
which is not included in the shortest path from v0 to v1 or v2.
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Figure 2: A counterexample for Problem 2.

3. A minimal spanning tree is shown in Fig. 3.

a

b

c

d

e

f g

h

1

2 1 5

6

4
3

Figure 3: A minimal spanning tree for Problem 3.

4. (a) procedure modified Kruskal
T := ∅

1



for i = 1 to |V | − 1 do
e := an edge of maximum weight not in T that does not form a cycle
when added to T
add e to T

end for
end procedure

(b) A maximal spanning tree is shown in Fig. 4.
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Figure 4: A maximal spanning tree for Problem 4.(b).

5. Consider a bipartite graph G = (X ∪ Y,E) where X is the set of girls and Y is the set
of boys. There is an edge in E linking x ∈ X and y ∈ Y if girl x likes boy y. For any
A ⊆ X, the number of edges incident to vertices in A is 4 · |A|, while the number of
edges incident to vertices in R(A) is 4 · |R(A)|. Since every edge incident to a vertex in
A must be an edge incident to a vertex in R(A), we have 4 · |A| ≤ 4 · |R(A)|, implying
|A| ≤ |R(A)|. By Hall’s theorem, there exists a complete matching.

6. (a) This problem can be considered as finding a complete matching for the bipartite
graph shown in Fig. 5. A complete matching is found and shown in Fig. 6.
Hence, (6, 5, 2, 4, 1) is an SDR.
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Figure 5: A bipartite graph for Problem 6.(a).

(b) Since the 5 sets {a,m}, {a, r, e}, {m, a, e}, {m, e}, {r, a,m} include only the 4 el-
ements a, e,m, r, by Hall’s Theorem, a complete matching is not possible for the
associated bipartite graph. Hence, no SDR exists.
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Figure 6: A complete matching for Problem 6.(a).

S {s} {s, a} {s, b} {s, c} {s, a, b} {s, a, c} {s, b, c} {s, a, b, c}
T {a, b, c, t} {b, c, t} {a, c, t} {a, b, t} {c, t} {b, t} {a, t} {t}

cap(S, T ) 7 9 8 11 7 12 9 7

Table 1: All the cuts and corresponding capacities for Problem 7.(a).

7. (a) All the cuts (S, T ) and corresponding capacities cap(S, T ) are shown in Table 1.

(b) The maximum value of a flow from s to t is equal to the minimum capacity of a
cut separating s and t. Therefore, the maximum value of a flow from s to t is 7.

8. (a) The value of the flow f is the outflow of the source s. Therefore, the value of the
flow f is 6.

(b) A maximum flow f1 for this network is given by

f1(s, a) = f1(f, i) = f1(i, t) = 6

f1(s, b) = f1(s, c) = f1(c, f) = 4

f1(b, a) = f1(b, f) = 2

f1(a, d) = f1(d, g) = f1(g, t) = 8

with all other f1(x, y) = 0. Hence its value is f1(s, a) + f1(s, b) + f1(s, c) = 14.

(c) A minimum cut (S, T ) for this network is given by

S = {s, a, b, c, d, e, f, g, h}
T = {i, t}.
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