Array ( [0] => Array ( [title] => L22A [link] => https://www.youtube.com/embed/8DudK4nT9ec ) [1] => Array ( [title] => L22B [link] => https://www.youtube.com/embed/8WXuGio0D2Y ) [2] => Array ( [title] => L22C [link] => https://www.youtube.com/embed/TotKv12TCp4 ) ) 國立清華大學開放式課程OpenCourseWare(NTHU, OCW) - 第22講 Surfaces of constant Gaussian curvature

Title

第22講 Surfaces of constant Gaussian curvature

第1節

L22A

第2節

L22B

第3節

L22C

Syllabus

章節大綱

L22A
        1. Review: Geodesic Parametrization and Geodesic
            Coordinates
        2. Theorem: Any Point of a Surface of Constant Gauss
            Curvature Is
            Contained in a Coordinates Neighborhood That Is
            Isometric to an Open
           Set of a Plane, a Sphere or a Pseudo-Sphere

L22B
       1. Theorem: Any Point of a Surface of Constant Gauss
            Curvature Is
            Contained in a Coordinates Neighborhood That Is
            Isometric to an Open
            Set of a Plane, a Sphere or a Pseudo-sphere (cont.)
       2. Simple Closed Piecewise Regular Parametrized Curve

 
L22C
       1. Closed Vertices and Regular Arcs
       2. Differentiable Functions That Measure the Positive
          Angle from x_u to the Tangent of a Simple Closed
          Curve